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Abstract. Let C be a smooth projective curve over an algebraically closed
field of arbitrary characteristic. Let Mss

r,L
denote the projective coarse moduli

scheme of semistable rank r vector bundles over C with fixed determinant L.
We prove Pic(Mss

r,L
) = Z, identify the ample generator, and deduce that Mss

r,L

is locally factorial. In characteristic zero, this has already been proved by
Drézet and Narasimhan. The main point of the present note is to circumvent
the usual problems with Geometric Invariant Theory in positive caracteristic.

1. Introduction

In classification problems for algebro-geometric objects, the Picard group of the
moduli space is always a very interesting invariant. Roughly speaking, it mea-
sures how many ways there are to assign to each of the objects in question a
one-dimensional vector space, in a suitably functorial way.

In the case of vector bundles with fixed determinant over a smooth projective
curve over C, Drézet and Narasimhan proved in their famous paper [5] that the
Picard group of the coarse moduli scheme is canonically isomorphic to Z. This also
yields some information on the singularities of the coarse moduli scheme.

Actually the concept of assigning to each object a one-dimensional vector space
is formalised in the notion of a line bundle on the moduli functor, or on the moduli
stack. However, such a line bundle does not always give a line bundle on the coarse
moduli scheme. In characteristic zero, a criterion for when it does is given by
Kempf’s lemma from Geometric Invariant Theory. But in positive characteristic,
there seems to be no general method to produce all line bundles on a coarse moduli
scheme, or more generally on a GIT quotient.

The present note answers this question for the projective coarse moduli scheme
Mss

r,L of rank r vector bundles with fixed determinant L on a smooth projective
curve. We work over an algebraically closed field of arbitrary characteristic, but
only the case of positive characteristic is new.

Actually there seems to be a little uncertainty about the definition of Mss
r,L, since

taking closed subschemes does not commute with forming GIT quotients in general.
We define the three possible coarse moduli schemes in Section 2, and prove that
the canonical morphisms between them are isomorphisms.

Section 3 contains the main result that the Picard of Mss
r,L is canonically isomor-

phic to Z. We also identify the ample generator and deduce that Mss
r,L is locally

factorial. The proofs are based on some recent literature on the Picard group of
a corresponding moduli stack, together with a theorem of Faltings that there are
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enough nonabelian theta functions; the latter allows us to descend line bundles
from the moduli stack to the coarse moduli scheme.

Under some assumptions on deg(L), the Picard group of Mss
r,L has also been

studied in the preprint [11], using more advanced tools for positive characteristic.

Acknowledgements. I thank V.B. Mehta for encouraging me to write this note. I
also thank the referees for some helpful suggestions. The work was supported by
the SFB 647: Raum - Zeit - Materie.

2. Moduli of vector bundles with fixed determinant

Let k be an algebraically closed field of arbitrary characteristic. Let C be a
geometrically irreducible smooth projective curve over k of genus g ≥ 2. Let

Mr,d ⊇ M
ss
r,d

πr,d

−−→ M
ss
r,d

denote the moduli stack of vector bundles E of rank r over C with deg(E) = d ∈ Z,
its open substack where E is semistable, and the corresponding coarse moduli
scheme, respectively. Mr,d is a smooth irreducible Artin stack over k, and M

ss
r,d is

a normal irreducible projective variety over k [16, Théorème 17] constructed using
Geometric Invariant Theory [13]. The morphism πr,d is universal in the sense that
every morphism from Mss

r,d to a scheme factors uniquely through it.

There are several ways of fixing the determinant det(E) := ΛrE. Let Picd(C)
denote the Picard variety of line bundles L of degree d over C, and choose one such
line bundle L. One may consider the scheme-theoretic fiber

M
ss
r,L →֒ M

ss
r,d

of the morphism det : Mss
r,d → Picd(C) over the point L. One also has the stacks

Mr,=L ։ Mr,∼=L →֒ Mr,d

where the closed substack Mr,∼=L is the fiber of det : Mr,d → Picd(C) over the
point L, and Mr,=L is the Gm-torsor over Mr,∼=L whose fiber over any point E is
the space of all isomorphisms φ : L → det(E). So Mr,∼=L is the moduli stack of
all E such that det(E) ∼= L, whereas Mr,=L is the moduli stack of all pairs (E, φ)
containing an isomorphism φ : L → det(E). Since the trace map

(1) tr : Ext1(E,E) −→ H1(C,OC)

is surjective in any characteristic, Mr,∼=L is still smooth; the same follows then for
Mr,=L. Using [13, Section 1.5], the GIT construction of Mss

r,d carries over to these
fixed determinant situations and provides coarse moduli schemes

Mr,=L ⊇ Mss
r,=L

πr,=L

−−−−→ M
ss
r,=L and Mr,∼=L ⊇ Mss

r,∼=L

πr,∼=L

−−−−→ M
ss
r,∼=L

for the open substacks Mss
r,=L and Mss

r,∼=L where E is semistable. The morphisms
πr,=L and πr,∼=L are again universal among morphisms to schemes.

The problem of comparing the three coarse moduli schemes Mss
r,=L, M

ss
r,∼=L and

Mss
r,L might seem trivial at first sight, but it involves slightly delicate issues of GIT

in arbitrary characteristic.

Proposition 2.1. The canonical morphisms

M
ss
r,=L −→ M

ss
r,∼=L −→ M

ss
r,L

given by the universal properties of πr,=L and πr,∼=L are isomorphisms.
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Proof. Choose an ample line bundle O(1) over X , and an integer m ≫ 0 such
that E(m) := E ⊗ O(1)⊗m is globally generated with H1(C,E(m)) = 0 for every
semistable E of rank r and degree d; then H0(C,E(m)) has the same dimension
N = rχ(O(m)) + d for all such E. We have the standard presentation

Mss
r,d = [Qss

r,d/GLN ]

where Qss
r,d is the fine moduli scheme of isomorphism classes of pairs (E,B) consist-

ing of a semistable vector bundle E of rank r and degree d together with a basis B
of H0(C,E(m)). The variety Qss

r,d is smooth, and GLN acts on it by changing the
basis B. The above construction of the stacks Mss

r,∼=L and Mss
r,=L directly implies

that this presentation of Mss
r,d induces presentations

(2) M
ss
r,∼=L = [Qss

r,∼=L/GLN ] and M
ss
r,=L = [Qss

r,=L/GLN ]

where Qss
r,∼=L is the fiber of det : Qss

r,d → Picd(C) over the point L, and Qss
r,=L is the

Gm-torsor over Q
ss
r,∼=L whose fibers parametrize isomorphisms φ : L → det(E).

The morphism det: Qss
r,d → Picd(C) is a submersion, since its differential at any

point (E,B) is the composition of the natural surjective linear map

T(E,B)Q
ss
r,d −→ Ext1(E,E)

that sends each infinitesimal deformation of a pair (E,B) to the underlying infini-
tesimal deformation of E, followed by the trace map (1), which is surjective as well.
This shows that Qss

r,∼=L and Qss
r,=L are also smooth.

The coarse moduli spaces in question are constructed via GIT as good quotients

M
ss
r,d = Qss

r,d//GLN , M
ss
r,∼=L = Qss

r,∼=L//GLN and M
ss
r,=L = Qss

r,=L//GLN

in the sense of [10, Definition 4.2.2]. In particular, these are categorical quotients.
Slightly abusing notation, we denote the quotient morphisms again by

(3) Qss
r,d

πr,d

−−→ M
ss
r,d, Qss

r,∼=L

πr,∼=L

−−−−→ M
ss
r,∼=L and Qss

r,=L

πr,=L

−−−−→ M
ss
r,=L.

The center Gm ⊆ GLN acts trivially on Qss
r,d and Qss

r,∼=L, but not on Qss
r,=L. More

precisely, λ · idE provides an isomorphism between the pairs (E,B) and (E, λ · B)
for any nonzero scalar λ, but only between the triples (E,B, φ) and (E, λ ·B, λr ·φ).

Thus we see that the (possibly non-reduced) subgroup µr ⊂ Gm acts trivially on
Qss

r,=L, and the (scheme-theoretic) factor group Gm/µr
∼= Gm acts freely on Qss

r,=L

with quotient Qss
r,∼=L. In particular, every GLN -invariant morphism from Qss

r,=L

to a scheme factors uniquely through Qss
r,∼=L. This means that the canonical map

between the categorical quotients Mss
r,=L and Mss

r,∼=L is an isomorphism.
Now we compare Mss

r,∼=L and Mss
r,L. The former is a GIT quotient of a closed

subscheme of Qss
r,d, whereas the latter is a closed subscheme of a GIT quotient of

Qss
r,d. These two operations commute in characteristic 0, but they do not commute

in general in positive characteristic; this is the main technical issue here.
Sending each line bundle ξ of degree 0 over C to L⊗ ξ⊗r defines a morphism

J(C) := Pic0(C)
τr,L
−−→ Picd(C).
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We consider the pullback diagram

Qss
r,d ×Picd(C) J(C) //

πr,d×id

��

Qss
r,d

πr,d

��

Mss
r,d ×Picd(C) J(C) //

��

Mss
r,d

det
��

J(C)
τr,L

// Picd(C).

Since πr,d is a uniform categorical quotient by [13, Theorem A.1.1], and τr,L is flat,
the pullback πr,d × id is also a categorical quotient modulo the action of PGLN .

Sending each pair (E,B) and each line bundle ξ to E ⊗ ξ−1 defines a morphism

Qss
r,d × J(C) −→ M

ss
r,d.

It restricts, by definition of τr,L, to a morphism

Qss
r,d ×Picd(C) J(C) −→ M

ss
r,∼=L.

This morphism is clearly PGLN -invariant, and hence descends to a morphism

M
ss
r,d ×Picd(C) J(C) −→ M

ss
r,∼=L.

Its restriction to the (scheme-theoretic) fiber over the origin in J(C) is a morphism

M
ss
r,L −→ M

ss
r,∼=L.

It is straightforward to check that this morphism is a two-sided inverse of the
canonical morphism Mss

r,∼=L → Mss
r,L in question. �

In order to simplify the notation, we will from now on identify Mss
r,=L and Mss

r,∼=L

with M
ss
r,L via the canonical isomorphisms in Proposition 2.1.

Corollary 2.2. The canonical homomorphisms

OMss

r,L
−→ (πr,∼=L)∗(OMss

r,∼=L
) and OMss

r,L
−→ (πr,=L)∗(OMss

r,=L
)

are isomorphisms of Zariski sheaves.

Proof. We have seen in the previous proof that Mss
r,L is a good quotient of both

Qss
r,∼=L and Qss

r,=L modulo GLN . In particular, the canonical homomorphisms

OMss

r,L
−→ (πr,∼=L)∗(OQss

r,∼=L
)GLN and OMss

r,L
−→ (πr,=L)∗(OQss

r,=L
)GLN

induced by the quotient morphisms in (3) are isomorphisms. Due to the presen-
tations in (2), these invariant direct images are precisely the direct images of the
structure sheaves of the stacks in question. �

3. The Picard group of the coarse moduli scheme

We keep the notations of the previous section. In particular, L is a line bundle of
degree d over the curve C, and Mr,=L is the moduli stack of rank r vector bundles
E over C together with an isomorphisms L → det(E). We assume r ≥ 2.

Let Ldet denote the determinant of cohomology line bundle over Mr,d. Its fiber

over the moduli point of a vector bundle E is by definition detH0(E)⊗det−1 H1(E).
To describe this line bundle more precisely, let E be a vector bundle over C × S
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for some k-scheme S. Then the complex Rpr2,∗(E) over S is perfect by [8], so after
replacing S by an open covering, we may assume

Rpr2,∗(E)
∼= [F0 ∂

−→ F1]

with vector bundles F0 and F1 over S. In this case, the pullback of Ldet to S is

det Rpr2,∗(E)
∼= det(F0)⊗ det(F1)∗;

see [12] for more details on the construction of such determinant line bundles.
In the special case d = r(g − 1), vector bundles E of rank r and degree d satisfy

χ(E) = 0 by Riemann-Roch. Then rank(F0) = rank(F1), so det(∂) is a section of
the line bundle det(F0)∗ ⊗ det(F1); these sections patch together to a canonical
section

(4) ϑ ∈ H0(Mr,r(g−1),L
∗
det)

which is known as a (nonabelian) theta function.
Slightly abusing notation, we will denote the pullback of Ldet to Mr,=L again

by Ldet, and also its restriction to the open substacks

Mr,=L ⊇ Mss
r,=L ⊇ Ms

r,=L

defined by the condition that E is semistable or stable, respectively.

Theorem 3.1. The group Pic(Mr,=L) is freely generated by Ldet.

Proof. The case k = C is contained in [1, Remark 7.11 and Proposition 9.2]. For
arbitrary characteristic and L trivial, it is proved in [7, Theorem 17]. The general-
ization to nontrivial line bundles L is carried out in [3, Proposition 4.2.3].

More precisely, the latter reference shows Pic(Mr,=L) ∼= Z. In order to determine
the image of Ldet under this isomorphism, we use the morphism

ϕ : M1,0 −→ Mr,=L

defined by sending each line bundle ξ of degree 0 to (L⊗ ξ)⊕O
r−2
C ⊕ ξ−1. We also

use the canonical homomorphism of abelian groups

c : Pic(M1,0) −→ EndJ(C)

given by [3, Section 3.2]; in the notation of that section, it is the composition

Pic(M0
Gm

)
cGm

−−→ NS(MGm
)

pr
2

−−→ Homs(Z⊗ Z,EndJC) →֒ EndJC .

Using the standard isomorphism

detRpr2,∗(E1 ⊕ E2) ∼= detRpr2,∗(E1)⊗ detRpr2,∗(E2)

together with [3, Lemma 4.4.1 and Remark 3.2.3], we see that

c ◦ ϕ∗ : Pic(Mr,=L) −→ EndJ(C)

maps Ldet to −2 · idJ(C). On the other hand, c ◦ ϕ∗ maps the two generators of
Pic(Mr,=L) to ±2 · idJ(C) according to [3, Proposition 4.4.7 and Remark 3.2.3].
This shows that Ldet generates Pic(Mr,=L). �

Corollary 3.2. i) The group Pic(Mss
r,=L) is freely generated by Ldet.

ii) The group Pic(Ms
r,=L) is generated by Ldet.
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Proof. Since Mr,=L is a smooth Artin stack, the restriction maps

Pic(Mr,=L) −→ Pic(Mss
r,=L) −→ Pic(Ms

r,=L)

are surjective; see for example [4, Lemma 7.3]. The first of these maps is also
injective, because the complement of Mss

r,=L in Mr,=L has codimension ≥ 2. The

latter follows from the fact that Mr,=L is smooth of dimension (g − 1)(r2 − 1),
whereas the moduli stack of triples (E, φ,E1) with (E, φ) in Mr,=L and E1 ⊆ E a
subbundle of fixed rank 0 < r1 < r and degree d1 is smooth of dimension

(g − 1)(r21 + (r − r1)
2
− 1) + r1(r − r1)

(

g − 1−
d1
r1

+
d− d1
r − r1

)

according to [9, Proposition A.3]; for d1/r1 > d/r, this is ≤ (g− 1)(r2 − 1)− 2. �

The stable locus Ms
r,=L ⊆ Mss

r,=L is the inverse image of an open subscheme

M
s
r,L ⊆ M

ss
r,L.

Lemma 3.3. The canonical group homomorphisms

Pic(Mss
r,L) −→ Pic(Mss

r,=L) and Pic(Ms
r,L) −→ Pic(Ms

r,=L)

given by pullback along the morphism πr,=L are injective.

Proof. Let L be a line bundle on M
(s)s
r,L such that (πr,=L)

∗(L) is trivial on M
(s)s
r,=L.

Then Corollary 2.2 implies that (πr,=L)∗(πr,=L)
∗(L) is also a trivial line bundle.

Using the projection formula and again Corollary 2.2, it follows that L is trivial. �

Corollary 3.4. The group Pic(Mss
r,L) is isomorphic to Z.

Remark 3.5. In the case L = OC of vector bundles with trivial determinant, similar
arguments have been given in [15, Theorem 7].

Lemma 3.6. The line bundle L⊗n
det on Ms

r,=L can only be isomorphic to the pullback

of a line bundle on Ms
r,L if n is a multiple of r/ gcd(r, d).

Proof. Since Ldet is a line bundle on the stack Mr,d, the automorphism group
Aut(E) of the vector bundle E acts on the fiber of Ldet over the moduli point of
E in Mr,d. The subgroup Gm ⊆ Aut(E) of scalar automorphisms acts on this one-
dimensional vector space with weight χ := r(1−g)+d according to Riemann-Roch.

Similarly, the automorphism group Aut(E, φ) of the pair (E, φ : L
∼
−→ det(E))

acts on the fiber of Ldet over the moduli point of (E, φ) in Mr,=L. The (possibly
non-reduced) subgroup scheme µr ⊆ Aut(E, φ) of scalar automorphisms still acts
with weight χ. If an integer n is not divisible by r/ gcd(r, d), then n · χ is not
divisible by r, so this action of µr on the fibers of L⊗n

det is nontrivial.
On the other hand, all automorphism group schemes of Ms

r,=L act trivially on
the fibers of any line bundle that is pulled back from Ms

r,L. �

Theorem 3.7. i) The line bundle L
⊗−r/ gcd(r,d)
det on Mss

r,=L is isomorphic to the

pullback of an ample line bundle L(Θ) on Mss
r,L.

ii) L(Θ) generates Pic(Mss
r,L)

∼= Z, and its restriction generates Pic(Ms
r,L).

Proof. Let F be a vector bundle of some rank n ≥ 1 over C such that

deg(F )/n+ d/r = g − 1.
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Sending each pair (E, φ) to the vector bundle E ⊗ F defines a morphism of stacks

Mss
r,=L −→ Mnr,nr(g−1).

It is easy to check that the pullback of Ldet along this morphism is isomorphic to
L
⊗n
det. Let us denote the pullback of the canonical section ϑ in (4) by

ϑF ∈ H0(Mss
r,=L,L

⊗−n
det ).

The locus where ϑF does not vanish is by construction the open substack

UF ⊆ Mss
r,=L

defined by the condition H0(C,E⊗F ) = H1(C,E⊗F ) = 0. S-equivalence preserves
this condition, so UF is the inverse image of an open subscheme

UF ⊆ M
ss
r,L

since Mss
r,L is a good quotient. The section ϑF trivializes the line bundle L⊗−n

det over

UF . Using Corollary 2.2, it follows that the sheaf (πr,=L)∗(L
⊗−n
det ) is isomorphic to

the structure sheaf over UF , and that the canonical homomorphism

(πr,=L)
∗(πr,=L)∗(L

⊗−n
det ) −→ L

⊗−n
det

is an isomorphism over UF . According to [17, Lemma 3.1 and Remark 3.2], we have

M
ss
r,L =

⋃

rank(F )=n

UF

for every sufficiently large multiple n of r/ gcd(r, d); this was first shown by Faltings
[6]. Under this assumption on n, it follows that (πr,=L)∗(L

⊗−n
det ) is a line bundle

on Mss
r,L which pulls back to L

⊗−n
det on Mss

r,=L. Taking the difference of these line

bundles for two successive values of n, we get a line bundle L(Θ) on Mss
r,L with

(πr,=L)
∗L(Θ) ∼= L

⊗−r/ gcd(r,d)
det

on Mss
r,=L. This line bundle and its restriction generate Pic(Mss

r,L) and Pic(Ms
r,L)

due to Corollary 3.2, Lemma 3.3 and Lemma 3.6. In particular, L(Θ) or its dual is
ample on Pic(Mss

r,L). But we have also seen that every sufficiently large power of

L(Θ) is globally generated; hence L(Θ), and not its dual, is ample. �

Corollary 3.8. The projective variety Mss
r,L is locally factorial.

Proof. In the case g = r = 2 and d = deg(L) even, the moduli space Mss
r,L is

isomorphic to P3 by [14, 2], and hence locally factorial.
In all other cases, the complement of Ms

r,L has codimension ≥ 2 in Mss
r,L. In

particular, the Picard group of Ms
r,L coincides with the Picard group of the smooth

locus of Mss
r,L. Every line bundle on this smooth locus can be extended to Mss

r,L

due to the previous theorem. This implies that Mss
r,L is locally factorial. �

Remark 3.9. The singularities of Mss
r,L have been studied in [18]. In particular, it

is proved there that Mss
r,L is Gorenstein.
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