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Coordinating Student Learning and Teacher Activity – The Case of 
Savannah: Motivating an Understanding of Representativeness 

through Examination of Distributions of Data 

Dr. Aisling Leavy, Mary Immaculate College, Limerick 
 

This research study investigated the measures chosen by five 4th to 8th
 
grade students when 

selecting statistical measures to describe distributions of data. Over the course of eight 
weeks of instruction, individual teaching experiments were conducted to investigate the 
development of understanding of distribution. The results indicate that consideration of 
representativeness was a major factor that motivated modification of approaches to 
constructing indices of distributions. This paper outlines the case of a 4th grade student who 
participated in the study and narrates her journey as she grappled with increasingly complex 
statistical ideas relating to representativeness. 

 
Theoretical Perspective 
Recent approaches to curriculum design and research in statistics education engage 
students in examining distributions of data rather than working with isolated data values 
devoid of context. A distribution refers to the arrangement of data values along a scale 
of measurement (Hardyck & Petrinovich, 1969) and distributions may be depicted using 
a variety of graphical representations. Distributions are commonly described using 
parameters: measures of centre, variability, skew (symmetry) and kurtosis 
(“peakedness”). The parameters that are the focus of study at primary school level are 
center (mean, median, and mode) and variability (range).  
 
An important skill when examining a distribution of data is the ability to find trends and 
patterns in the data and thus infer properties. This is in essence what the parameters of a 
distribution describe – underlying signals (Konold & Pollatsek, 2002) or messages 
communicated by the data. In primary school mathematics one way to focus students on 
the signals emitted by a distribution is to ask them to elect a value that best represents 
the distribution – often referred to as a typical value. This notion of typicality is 
referenced in many curricula and by national bodies such as in the Principles and 
Standards for School Mathematics (NCTM, 2000).  
 
Recent research in statistics education examines primary students (Cobb, 1999; Konold, 
Robinson, Khalil, Pollatsek, Well, Wing & Mayr, 2002; Leavy & Middleton, 2001; 
Lehrer & Schauble, 2002; Mokros & Russell, 1995) and preservice teachers (Leavy, 
2004; Leavy & O’Loughlin, 2006) understandings of and efforts to represent (or typify) 
distribution. Research examining the measures children use to represent and summarize 
distributions of data indicates that a variety of measures are used. The most frequently 
identified approaches used to determine representative values are the measures of center 
and spread such as modal clumps, ranges, and intervals. Student understandings of 
appropriate measures to represent data vary and include conceptions of average as 
modal (values occurring with the greatest frequency) and middle (akin to the median). 
 
Purpose of the Study 
The research from which this paper was motivated examines student’s decision-making 
processes when selecting statistical measures to represent a distribution of data. In this 
line of inquiry, effort was made to ascertain what (formal or informal) measures 
students utilize in representing distributions, and how these measures develop and 
contribute to an understanding of distribution shape and structure. For the remainder of 
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the paper, the measures students select to represent distributions are referred to as 
representative measures.  
 
Design and Methodology 
Participants 
Five participants from a variety of urban schools in the Southwestern United States 
participated in the study. Students had not received any specialized instruction or 
experiences with data prior to participation in the study. The 4th grade student, who is 
the focus of this paper, had few experiences with data, limited mainly to pictogram and 
pie chart interpretation. All other students had received curricular instruction relating to 
graphical representations in addition to calculating measures of central tendency.  

 
Procedure 
Teaching experiment methodology was used to uncover student’s conceptual 
understanding of distribution. Teaching experiment methodology consisted of a clinical 
interview phase, a teaching phase and an analysis phase. Clinical interviews lasted 60 
minutes and were video taped. Two clinical interviews were conducted with each 
student, one at the outset of the study to determine initial understanding of distribution 
and another at the end of the study to assess changes in understanding of distribution.  
 
Teaching episodes took place following the initial clinical interview and consisted of 
each student working individually on a variety of model-eliciting activities. Each 
teaching episode was characterized by the presentation of specific tasks designed to 
elicit models of students understanding of certain statistical phenomena. The tasks used 
were derived from a variety of sources, the majority being developed by the instructor 
and informed by a previous pilot study (Leavy, 2003), in addition to original tasks used 
by permission of the Cobb & McClain group at Vanderbilt (McGatha, Cobb, McClain, 
2002). Problems were presented in several forms (e.g. graphical, tabular etc.) and 
students were asked to describe distributions and determine representative values for the 
distributions. In other cases students collected their own data and constructed typical 
values for the data. All data sets were presented predominantly on line plots or on stem 
and leaf plots chosen due to their structure facilitating the display of individual data 
values, the visibility of which were considered important for the construction of 
representative values.  Eight teaching episodes, lasting approximately 50 minutes each, 
were carried out with Savannah; each episode was audio taped and several sessions 
were videotaped. These episodes were used to construct a model of her mathematical 
thinking and guide her to develop more sophisticated ways of reasoning about data.  

 

Data Analysis 
The analysis phase involved examining the data resulting from the clinical interviews 
and the teaching episodes. Data from the clinical interview were used to construct a 
hypothetical learning trajectory (Simon, 1995) for Savannah. Ongoing analysis occurred 
between teaching episodes, and a retrospective analysis focused on the cumulative 
episodes. Results from the ongoing analysis were used to inform the direction of the 
study and the construction of tasks for subsequent teaching episodes. The main sources 
of data were the researcher’s field notes, audio and video records of the interactions, and 
samples of the student’s written work. Savannah’s verbalizations, inscriptions, and 
models were analyzed as to how they revealed her schemes for structuring and depicting 
distributions. Hence, the teaching episodes provided the means to generate in-depth 
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knowledge of Savannah’s conceptual understanding of data and how it was fostered in a 
coherent instructional sequence.  
 
Results: A Case Study of Savannah 
In the reporting of the results emphasis is placed on understandings of the statistical 
concepts examined in the initial clinical interview and the subsequent development of 
student’s conceptual schemes over the course of the teaching experiment. Each of the 
five participants in the teaching experiment constitutes a separate developmental case. 
For the purpose of this paper, I will focus on the case of Savannah the 4th grade student. 
This case casts light on particular statistical understandings and misconceptions the 
roots of which have important implications for the design of statistical instruction 
particularly within the Irish primary education system.  
 
Background on Savannah 
Savannah was 9 years old and stated that mathematics was her favourite subject. She 
was in a 4th grade non-differentiated mathematics class in public school. Her in-class 
performance in mathematics placed her in the upper 10% of the students. As a result, 
Savannah would be placed in a group for more mathematically able students in 5th 
grade. 
 
Initial approaches to constructing representative measures 
During the initial clinical interview and first teaching episodes Savannah constructed 
representative measures based on her own experience of the phenomenon under 
investigation. In these situations Savannah seemed not to comprehend that data referred 
to an actual event, this was indicated by her inability to attend to the data presented on 
the graphs. The following task (Task 1, Appendix A) is an example of one such episode 
in which Savannah demonstrated the ability to read values from the graph but the 
inability to use the data to answer the question. 
 

Teacher: How many gummi bears would you say are in a packet of candy? 
Savannah: Ah.. like … maybe 25 or no .. probably 26. 
Teacher: Why do you say 26 gummi bears?  …… (long pause) 
Teacher: And did those students (pointing to the graph) get as many as 26? 
Savannah: No, but … I think you’d get more. It really depends on … just … I always get 
more. 

 
As can be seen from the example above, Savannah used her own experience of the size 
of a packet of Gummi Bears to answer the question. The value Savannah elected 
actually fell outside the range of values presented on the line plot and resulted in the 
presentation of an idiosyncratic and non-representative data value. 
 
Initial analysis of Savannah’s response suggested that the situation presented in the task 
had particular relevance for Savannah and influenced her response. To test this 
hypothesis, Savannah was presented with a number of tasks and asked to interpret the 
data presented on them. As with the ‘Gummi Bear’ task, she continued to use her own 
experiences of the problem situations to construct representative values. It seemed that 
Savannah (erroneously) perceived that graphs were merely display tools used to present 
a ‘picture’ of data. In her view, graphs were objects the purpose of which was to read 
off discrete values rather than presenting a means to examine distributional structure – 
hence explaining her difficulties with questions that demanded an examination of 
structure. The following transcript (Task 2, Appendix A) arising from the first teaching 
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episode provides another example of her tendency to revert to her own experiences 
when determining representative values. 
 

Teacher: Based on this graph, generally, how many medals do you think a country won in 
the Olympics? … 
Savannah: Yeah .. em .. (sighs) okay 8. 
Teacher: Why 8? 
Savannah: Because .em .well I watched the Olympics and they said that it had been on for a 
while and they said she has already won 3 medals. And actually I would probably say about 
6.  
Teacher: 6 okay. Why 6? 
Savannah: Because I was watching the Olympics and a girl had ..  this swimmer had only 
had .. em .. only 3 medals .. and it was almost over so she couldn’t get that much more. 
Teacher: Okay. 
 

Teacher Activities to Promote the Development of Understanding 
Due to the difficulties in getting Savannah to attend to the data presented in tasks, 
several teaching episodes were devoted to data collection activities. The intent was that 
by providing experiences in collecting data and constructing graphs, Savannah would 
begin to understand that the data presented in graphs represented real situations. These 
data could then be used as information to determine representativeness. Examples of 
such activities were counting the numbers of raisins in boxes of raisins, the number of 
M&Ms in packets, recording resting and active heart rates etc. The data were collected 
and graphed on line plots from which Savannah was required to describe and interpret 
her data. As a result of engaging in such data modeling (Lehrer & Romberg, 1996) 
activities Savannah began to attend closely to the structure of the data, and midway 
through the teaching experiment paid attention to the structure of data sets that she had 
not constructed. It cannot be overemphasized that, in Savannah’s case, the activity of 
collecting and graphing data was a necessary precondition to understanding data.  
However, the transition was not effortless and as can be seen from the following 
transcript (Task 3, Appendix A) she did at times refer back to her own data collection 
experiences and neglected the data on display. 

 

Teacher: Based on this data, if you were the general manager how many raisins would 
you say are generally in a box of raisins? 
Savannah: I’d probably say 17. 
Teacher: Tell me why. 
Savannah: Because last week I counted up and measured and most boxes I had got were 17. 
Teacher: Now imagine that you didn’t count them up last week .. that you didn’t know 
there were 17. So imagine you were Anne Browne and you only had those 30 boxes … 
Savannah: Then I’d probably say 26. 
Teacher: Why? 
Savannah: Most people got the .. 7 that’s what it was. There is more of that [26] than that 
[17]. And it would probably be closest to that [26]. 

 

As can be seen from the example above, the results of the data collection activities in 
which Savannah had been involved were more salient than the data presented in the 
task. Hence her experiences took on greater importance and influenced her responses. 
Savannah made the transition from collecting her own data and making inferences from 
these data to being presented with data sets collected by others. Great care was taken in 
explaining how these data were collected and Savannah was often presented with 
descriptive scenarios related to the problems. The provision of context to problems 
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facilitated Savannah in understanding and attending to the data. Her representative 
values eventually became less related to her own experiences and she began to construct 
representative values using one particular strategy.  
 
Emerging Understandings of Representativeness 
The nature of the representative values provided by Savannah remained steadfast 
throughout the teaching experiment. All her typical values shared the same 
characteristic: they were modal values. Regardless of the shape of the distribution 
presented to Savannah, she always chose the mode as the value that represented the data 
set. Savannah never adjusted the representative value from the mode to allow for 
outliers, skew or gaps in the data. Even when her attention was drawn to the shape of 
the distribution and to the inability of a modal value to represent all the data, she 
remained unwavering in her decision that the mode represented the majority of the data. 
 
When asked to construct a representative value from a multimodal data set, Savannah’s 
initial strategy was to name all the modes that appeared in the data set. This pattern 
occurred across several tasks (Task 4, Appendix A), and Savannah was reluctant to 
examine the data so as to choose one specific typical value from the several 
possibilities.  
 

Teacher: If somebody came into Ms. Murphy’s class and said “Generally how tall are the 
students in your class. What would Ms. Murphy say?”  
Savannah: em .. 48 
Teacher: Okay. Why would you say 48? 
Savannah: 48 actually 48 or 43 because they have the most amount of people .. heights. 

 
In subsequent teaching episodes Savannah was presented with scenario’s that required 
her to choose one of the several possible modal values as the representative value. 
Savannah examined the data sets and chose modal values that had the largest number of 
data values clustered around it. This strategy indicated that she had some notion of the 
most frequent value being a representative measure (Task 5, Appendix A). 

 
Teacher: So it says that Jodie told the principal that the typical height of a 6th grade 
student was 43 or 48 inches. Why do you think she said that? 
Savannah: Because 43 and 48 em have the highest .. em .. number inches .. eh .. of a person 
in 6th grade. 
Teacher: However, the principal said: “... You must choose either 43 or 48 inches. Look at 
the data so that you can make your decision ...” Which value do you think Jodie should 
choose .. – 43 or 48 inches? Why? 
Savannah: 43 because it comes up first. 
 Savannah laughs 
Savannah: Oh I have a better idea. 48 because there are more numbers that are closer to 48 
than 43. 
Teacher: Great. For example?  
Savannah: Em next to 48 there's 49, 50, 47. 
Savannah: For 43 there’s only 44 and 42. 

 
Teacher Activities Highlighting Attention to the Limitations of the Mode as a 
Representative  Measure 
While the mode is an appropriate representative measure for many distributions of 
symmetric shape, it becomes less representative once the distribution becomes skewed. 
Savannah used the mode as a blanket measure regardless of distributional shape 
resulting in non-appropriate representative measures on several occasions. As a result, it 
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was considered important that Savannah’s attention be drawn to the limitations of the 
mode and that she be encouraged to consider other measures that represent a data set.  
 
Many attempts were made to draw Savannah’s attention to the importance of a typical 
value being representative. Savannah understood that the mode was not accurate in 
describing all the values in a distribution and expressed this understanding on a number 
of occasions. On one occasion she was presented with a scenario of another student 
deciding not to choose a modal value and adjusting the typical value from the mode to 
reflect the data more accurately. Savannah admitted the value of adjusting scores to 
increase representativeness but voiced concerned regarding the truth of such approaches 
(Task 6, Appendix A). 

 
Teacher: What do you think is the typical value? How high do you think a 4th grader is? 
Savannah: 30 .. 31 
Teacher: Why? 
Savannah: Because most kids are. 
Teacher: Okay now if you look at the next part of the question. 
 Teacher reads the explanation  
Teacher: Do you understand that even though 31 was the most it was also the smallest 
height? 
Savannah: Yeah. 
Teacher: She says there were lots of values higher than 31 so she moved the typical value 
up higher to reflect more of the students heights….  Do you think that is a good strategy? 
Savannah: No. Because it just wouldn’t be .. it wouldn’t be true. 
Teacher: Okay? 
Savannah: The .. the .. if most students are 31 … but well it’s more fair. 

 
It was thought that following introduction to the median that Savannah may have found 
it appropriate to use the median as a representative value. She chose, however, to select 
modal values even in the cases of distributions in which the median would have been 
the appropriate measure and the mode inappropriate. Savannah was presented with the 
situation of a student her age choosing a median value as the typical value and asked 
what she thought of the strategy. While she admitted that there were merits associated 
with using the median she stated that her first choice would remain the mode.  
 
Data from the clinical interview indicated that Savannah had no conception of the mean. 
In the teaching episodes, the mean presented difficulties for Savannah and it took 
several episodes for her to construct a meaningful understanding of the mean. She was 
initially introduced to the mean through a fair share model. She was encouraged to carry 
out fair share problems by physically distributing candy fairly amongst a number of 
agents. Savannah succeeded in solving each of the problems by distributing the candy. 
However, she often found it difficult to relate the answer back to the question and 
understand why the answer made sense. Savannah was also introduced to a balance 
approach to the mean. While she was not encouraged to balance values at equal 
distances on either side of the mean, she was exposed to the notion that the mean is the 
point on which the distribution balances. Initially it seemed as if Savannah had grasped 
the notion, as she was quite accurate at eyeballing the balance point of graphs, however, 
subsequent probing identified that she was in fact gauging the median. She was 
identifying a balance point of the distribution by finding the point on the graph that 
divided all the data values in half. She was not conceptualizing balance as a weighted 
quantity. Savannah never grasped the concept of the mean as a representative measure 
and did not suggest that the mean could be used to summarize a distribution of data.  
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Final Understandings of Representativeness 
In the final clinical interview Savannah was presented with the Gummi Bear task. Her 
response to this task indicated that she was attending to the presented data and not 
making references to her own experiences. The actual representative value provided by 
Savannah represented the mode of the distribution. Her choice of the mode reflects her 
strong belief that the mode is representative of the data because it is the most frequently 
occurring data value. Savannah’s justification for the mode being the typical value is 
more sophisticated than her previous arguments in that she incorporates the notion of 
the importance of the typical value being surrounded by other values. This indicates a 
transition to the notion of variability in that she has incorporated a ‘cluster’ idea, and 
may signal an attempt at coordinating the notions of location and variability. 
 
Savannah did, however, realize that the mode was not representative of all the values in 
the distribution. The terms she used to express this notion were the concepts of “fair” 
and “true.” She considered that the modal values told the truth about the data, the truth 
being that most values occurred at the mode. Hence in some ways the term typical 
meant the most frequently occurring value. The mode, however, according to Savannah 
was not always ‘fair’ because it did not represent everyone in the data set. Truth, 
however in Savannah’s mind, was primary to fairness. As the mode told the truth, even 
to the detriment of being fair, she felt compelled to use the mode in determining 
representative values (Task 7, Appendix A). 
 

Teacher: How long can a 3rd grade student hold their breath?  
Savannah: 14 or 7 seconds. 
Teacher: Okay. Why? 
Savannah: Because they both .. have the most amount of people .. 3 people have 14 and 3 
people have 7 and one person has 5 .. 3 people held their breath for 14 which is the most. 
But still 3 people held their breath for 7 seconds so I think that 14 and 7 are the only ones 
that matter and 24 doesn’t matter ‘cause it is all the way down there and only one person 
got it. 
Teacher: Great thank you. 
Savannah: They already got they [person who got 24 seconds] got a lot of stuff and then .. 
it’s not really fair. 
Teacher: Oh okay. On who? 
Savannah: Okay the people who held the most [the value at 24]. They beat that persons 
scores [14].. but still most people got it and .. 
Savannah: It is not really fair but it’s true. 

 

 

Summary of Savannah’s Schemes 
When asked to construct a representative value, Savannah displayed the tendency to 
ignore the data presented to her and rely on her own experiences of the presented 
situations. This resulted in the construction of idiosyncratic and thus non-representative 
measures. This predisposition to focus on her own experiences was overcome by 
engaging Savannah in data modeling activities. As a result of modeling data Savannah 
began to understand the meaning of data values presented on graphs, and with this 
comprehension came the keenness to examine graphically represented data.  
 
Subsequently, Savannah’s construction of representative values was exclusively focused 
on identifying modal values in a data set. Savannah considered the modal value as 
constituting an exact and accurate typical value, whilst not always being a fair value, 
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she did consider the mode as embodying an authentic and truthful representation of the 
data. It seemed that the mode was truthful because when used as a typical value it 
represented the ‘most’ occurrences of data in contrast to the median (or mean) which 
did not necessarily represent the most frequently occurring data values. In a sense, 
Savannah considered the mode as accurately portraying or reflecting the majority of the 
data values. This frequentist view of data is not atypical and has been found in other 
studies. When presented with multimodal data Savannah used the distribution of data 
around each mode as a determining factor indicating an understanding of a typical value 
being representative.  
 
Savannah also exhibited understanding of the median as constituting the middle of a 
data set and could identify the median when presented with a variety of forms of data. 
She did not, however, utilize the median as a representative measure. Thus she 
demonstrated procedural understanding of the median without the corresponding 
conceptual understandings (Hiebert and Lefevre, 1986). In other studies, this 
development of skills rather than concepts (Resnick & Ford, 1981) has been shown to 
result in students being able to calculate medians but not necessarily recognizing 
medians as measures of center or as group descriptors of data (Bakker, 2004; Konold & 
Higgins, 2003). In fact, other studies indicate that students see the median as a feature 
associated with a particular data value in the middle of the group rather than as a 
characterization of the entire group (Bakker, Biehler & Konold, 2005).  
 
Attempts were made to introduce Savannah to the concept of mean. However, she 
demonstrated difficulties in constructing a rich understanding of the mean and did not 
conceive of the mean as a representative measure. Following completion of the teaching 
experiment, Savannah’s understanding of the mean was limited to a fair share approach 
to the mean, and calculation of the mean could be carried out only through the use of 
concrete materials. Similarly, other studies have indicated that an overriding feature of 
the mean that presents difficulty for children is representativeness. A study of fifth 
through eighth graders found that students did not recognize instances in which the 
mean could be used to typify a data set, as indicated by the lack of instances where the 
mean was used to compare two groups of unequal size (Hancock, Kaput & Goldsmith, 
1992). The ability, of students to compute representative values when specifically 
instructed (Mokros & Russell, 1995) compared to their inability to construct 
representative values in other situations (Hancock et al., 1992) suggests that students do 
not typically understand the role that representative values play in data analysis.  
 
In summary, many experiences in collecting and graphing data were required before 
Savannah understood the meaning of data. The use of activities that required data 
collection, organization, and depiction resulted in Savannah demonstrating the ability to 
construct and interpret data using a variety of graphical representations. Her limited 
experiences in school mathematics coupled with her age and grade level resulted in 
Savannah never moving beyond her use of modal values in representing a data set. She 
understood the limitations of such measures but was reluctant to relinquish use of the 
mode. The concept of variability was not explored in any detail with Savannah due to 
her reluctance to consider the importance of any features of a data set apart from the 
mode. She did examine the distribution of data around the mode indicating her 
awareness of variability, however this was only in the context of the mode. However, it 
does indicate the incorporation of a ‘cluster’ idea, which might be thought of as a 
precursor or first look at variability. 
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Appendix 
 
Task 1     Number of ‘Gummi Bears’ in a packet 
A class of students were interested in examining the number of Gummi Bears in a 
packet. They each counted the number of bears in a packet and put their results on a line 
plot. 
What does the graph tell you about the number of Gummi bears students counted?  
From examining the graph, generally how many Gummi Bears would you expect to find 
in a packet of Gummi Bears? Why? Here are their results: 
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Task 2     The Winter Olympics Problem 
The 1984 Winter Olympics were held in Sarajevo, Yugoslavia. The data were 
reorganized into a line plot. Describe the data. What is the typical number of medals 
won by a country? 
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Task 3     The Raisin Data Controversy 
The general manager of sun maid raisins, Ann Brown, has received an inquiry regarding 
the average number of raisins that are in a box of sun maid raisins. She went down to 
the factory floor and picked up 30 boxes of raisins, counted the number of raisins in 
each box and the put the results on a line plot. Here is the number of raisins that he 
found in the 30 boxes: 
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Based on this data, if you were the general manager how many raisins would you say 
are generally in a box of raisins? 
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Task 4      Class Height Data 
On school sports day, Miss Murphy’s 5th grade basketball team played a game of 
basketball against Mr. Cody’s basketball team. Miss Murphy’s team won the game. 
Jamie, a student in Mr. Cody’s class, believes that the game was not fair. She believes 
that students in Miss Murphy’s class are taller than students in Mr. Cody’s class. So, 
when choosing a basketball team, Miss Murphy has a lot of tall students from which to 
choose. Jamie decided to measure the height of each student in both classes and 
construct a line plot for each class. Examine the graphs.  
What is the typical height of a student in Miss Murphy’s class?  
 

Height of Miss Murphy’s students 
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Task 5  
A student in the 6th grade class, Jodie, was also asked to calculate the height of the 
students in the 6th grade class. So, Jodie measured each member of the class using a tape 
measure and recorded it on a line plot. This is the line plot of the student’s heights. 
 

Height of 6th grade students 
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Jodie told the principal that the typical height of a 6th grade student was 43 or 48 inches. 
However, the principal said: 
“Tell me one number. You must choose either 43 or 48 inches. Look at the data so that 
you can make your decision between the two.” 
 
Which value do you think Jodie should choose as the typical height – 43 or 48 inches? 
Why? 
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Task 6      What do you think? 
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Another student who did this task during the summer chose 34 inches as the typical 
height even though 31 inches was the height that occurred most. Maria said that she 
chose 34 because: 
 
“I originally chose 31 as a typical value because it occurred the most. But then I looked 
at the data and saw that there were lots of people who were taller than 31 inches. In fact, 
even though 31 was the one that occurred most it was also the smallest value. So, I 
didn’t think that I should give the smallest height as the height of most students. There 
were lots of values higher than 31 so I moved the typical value up higher to reflect more 
of the students heights. However, I made sure that I kept my new value close to the 31 
inches” 
 
What do you think? Is this a good strategy? Why? 
 
 
 
Task 7     How long can you hold your breath? 
 
The 3rd grade classroom in the same school decided to carry out a similar study. They 
wanted to see how long they could hold their breaths. They also made a line graph of 
their results. What is the typical length of time a 3rd grader can hold their breath? 
 

 
 
 
X 

 
 
X 
X 

 
X 
X 
X 

 
 
X 
X 

 
 
 
X

  
 
 
 

 
 
 
X 

 
 
X 
X 

 
X 
X 
X 

 
 
X 
X 

 
 
 
X 

 
 
 
 

    
 
 
 

  
 
 
 

 
 
 
X 

5 6  7 8 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

 



 105

Task 6      What do you think? 
 

X 
X 
X 

 
 
X 
X 

 
 
 
X 

 
 
X 
X 

 
 
 
X 

 
 
 
X 

  
 
X 
X 

 
 
 
X 

    
 
 
X 

           
 
 
X 

 
 
 
X

3
1 

3
2 

3
3 

3
4 

3
5 

3
6 

3
7 

3
8 

3
9 

3
0 

3
1 

3
2 

3
3 

3
4 

3
5 

3
6 

3
7 

3
8 

3
9 

4
0 

4
1 

4
2 

4
3 

4
4 

4
5

 
 

 

 

Another student who did this task during the summer chose 34 inches as the typical 
height even though 31 inches was the height that occurred most. Maria said that she 
chose 34 because: 

 
“I originally chose 31 as a typical value because it occurred the most. But then I looked 

at the data and saw that there were lots of people who were taller than 31 inches. In 
fact, even though 31 was the one that occurred most it was also the smallest value. 
So, I didn’t think that I should give the smallest height as the height of most students. 
There were lots of values higher than 31 so I moved the typical value up higher to 
reflect more of the students heights. However, I made sure that I kept my new value 
close to the 31 inches” 
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