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Abstract. We show that representations of the Thompson group F in the automor-
phisms of a noncommutative probability space yield a large class of bilateral stationary
noncommutative Markov processes. As a partial converse, bilateral stationary Markov
processes in tensor dilation form yield representations of F . As an application, and
building on a result of Kümmerer, we canonically associate a representation of F to
a bilateral stationary Markov process in classical probability.

1. Introduction

The Thompson group F was introduced by Richard Thompson in the 1960s and many
of its unusual, interesting properties [CFP96, CF11] have been deeply studied over the
past decades, in particular due the still open conjecture of its nonamenability. Recently
Vaughan Jones provided a new approach to the construction of (unitary) representations
of the Thompson group F which is motivated by the link between subfactor theory and
conformal field theory (see [Jo17, Jo18a, Jo18b, BJ19a, BJ19b, AJ21]). Independently,
another approach to the representation theory of the Thompson group F is motivated
by recent progress in the study of distributional invariance principles and symmetries in
noncommutative probability (see [Kö10, EGK17] and [KKW20, Introduction]). More
precisely, a close relation between certain representations of the Thompson monoid F +

and unilateral noncommutative stationary Markov processes is established in [KKW20].
The goal of the present paper is to demonstrate that this connection appropriately ex-
tends to one between representations of the Thompson group F and bilateral stationary
noncommutative Markov processes (in the sense of Kümmerer [Kü85]). Throughout we
will mainly focus on a conceptual framework that is relevant in the operator algebraic
reformulation of stationary Markov processes in classical probability theory.

One of our main results is Theorem 3.2.3 which is about the construction of a local
Markov filtration and a bilateral stationary Markov process from a given representation
of the Thompson group F . Going beyond the framework of Markovianity, this construc-
tion is further deepened in Theorem 3.2.7 and Corollary 3.2.8, to obtain rich triangular
arrays of commuting squares. A main result in the converse direction is Theorem 4.2.1
where we provide a canonical construction of a representation of the Thompson group
F from a given bilateral stationary noncommutative Markov process in tensor dilation
form. Finally, we apply this canonical construction to bilateral stationary Markov pro-
cesses in classical probability. We establish in Theorem 4.3.3 that, for a given Markov
transition operator, there exists a representation of the Thompson group F such that
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this Markov transition operator is the compression of a represented generator of the
Thompson group F .

We keep the presentation of our results on the connection between representations
of the Thompson group F and Markovianity as close as possible to our treatment for
the Thompson monoid F + in [KKW20]. Here we focus on the dynamical systems ap-
proach for noncommutative stationary processes and deliberately omit reformulations
in terms of noncommutative random variables. In parts this is attributed to the fact
that usually the noncommutative probability space generated by a bilateral stationary
Markov sequence of noncommutative random variables turns out to be ‘too small’ to
accommodate a representation of the Thompson group F . This is in contrast to the
situation in [KKW20] where unilateral stationary Markov sequences generate a non-
commutative probability space which is large enough to support a representation of the
Thompson monoid F +. Some of these conceptual differences are further discussed and
illustrated in the closing Subsection 4.4. Therein we constrain ourselves to the basics
of the construction of representations of the Thompson group F from a given Markov
transition operator and postpone a more-in-depth structural discussion to the future.

Let us outline the content of this paper. Section 2 starts with providing definitions,
notation and some background results on the Thompson group F (see Subsection 2.1).
The basics of noncommutative probability spaces and Markov maps are given in Subsec-
tion 2.2. We review in Subsection 2.3 the notion of commuting squares from subfactor
theory, as it underlies the present concept of Markovianity in noncommutative proba-
bility. Furthermore we provide the notion of a local Markov filtration which allows us to
define Markovianity on the level of von Neumann subalgebras without any reference to
noncommutative random variables. Finally we review some results on noncommutative
stationary processes in Subsection 2.4. Here we will meet bilateral noncommutative
stationary Markov processes and Markov dilations in the sense of Kümmerer [Kü85] as
well as bilateral noncommutative stationary Bernoulli shifts.

We investigate in Section 3 how representations of the Thompson group F in the
automorphisms of noncommutative probability spaces yield bilateral noncommutative
stationary Markov processes. Subsection 3.1 introduces the generating property of
representations of F in Definition 3.1.1. This property ensures that the fixed point
algebras of the represented generators of F form a tower which generates the noncom-
mutative probability space, see Proposition 3.1.5. This tower of fixed point algebras
equips the noncommutative probability space with a filtration which, using actions of
the represented generators, can be further upgraded to become a local Markov filtra-
tion. Subsection 3.2 considers certain noncommutative stationary processes which are
adapted to this local Markov filtration.

The closing Section 4 shows that representations of F can be obtained from an im-
portant class of bilateral stationary noncommutative Markov processes. To be more
precise, in Subsection 4.1 we provide elementary constructions of the Thompson group
F in the automorphisms of a tensor product von Neumann algebra. This extends the
representation of the Thompson monoid F + obtained in [KKW20] and also provides
examples of bilateral noncommutative Markov and Bernoulli shifts. We show in Sub-
section 4.2 that Markov processes in tensor dilation form give rise to representations
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of F . Finally, in Subsection 4.3 we use a result of Kümmerer to show that, given a
bilateral stationary Markov process in the classical case, we can obtain representations
of F such that the associated transition operator is the compression of a represented
generator of F . We provide more details to further motivate the construction of these
representations in Subsection 4.4, also pointing out differences between the unilateral
and bilateral cases in the process.

2. Preliminaries

2.1. The Thompson group F . The Thompson group F , originally introduced by
Richard Thompson in 1965 as a certain group of piece-wise linear homeomorphisms on
the interval [0,1], is known to have the infinite presentation

F ∶= ⟨g0, g1, g2, . . . ∣ gkgℓ = gℓ+1gk for 0 ≤ k < ℓ <∞⟩.

We note that we work throughout with generators gk which correspond to the inverses of
the generators usually used in the literature (e.g. [Be04]). Let e ∈ F denote the neutral
element. As it is well-known, F is finitely generated with F = ⟨g0, g1⟩. Furthermore,
as shown for example in [Be04, Theorem 1.3.7], an element e ≠ g ∈ F has the unique
normal form

g = g−b00 ⋯g
−bk
k gakk ⋯g

a0
0 (2.1.1)

where a0, . . . , ak, b0, . . . , bk ∈ N0, k ≥ 0 and

(i) exactly one of ak and bk is non-zero,
(ii) if ai ≠ 0 and bi ≠ 0, then ai+1 ≠ 0 or bi+1 ≠ 0.

As the defining relations of this presentation of F involve no inverse generators, one
can associate to it the monoid

F + = ⟨g0, g1, g2, . . . ∣ gkgℓ = gℓ+1gk for 0 ≤ k < ℓ <∞⟩+, (2.1.2)

referred to as the Thompson monoid F +. We remark that, alternatively, the generators
of this monoid can be obtained as morphisms (in the inductive limit) of the category
of finite binary forests, see for example [Be04, Jo18a].

Definition 2.1.1. Let m,n ∈ N0 with m ≤ n be fixed. The (m,n)-partial shift shm,n is
the group homomorphism on F defined by

shm,n(gk) = {
gm if k = 0

gn+k if k ≥ 1.

We remark that the map shm,n preserves all defining relations of F and is thus well-
defined as a group homomorphism.

Lemma 2.1.2. The group homomorphisms shm,n on F are injective for all m,n ∈ N0.

Proof. It suffices to show that shm,n(g) = e implies g = e. Let g ∈ F have the (unique)
normal form as stated in (2.1.1). Thus, by the definition of the partial shifts,

shm,n(g) = g
−b0
m ⋯g

−bk
n+k g

ak
n+k⋯g

a0
m .
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Thus shm,n(g) = e if and only if gakn+k⋯ g
a0
m = g

bk
n+k⋯ g

b0
m . Since the elements on both sides

of the last equation are in normal form, its uniqueness implies ai = bi for all i. But this
entails g = e. □

2.2. Noncommutative probability spaces and Markov maps. Throughout, a
noncommutative probability space (M, ψ) consists of a von Neumann algebra M and
a faithful normal state ψ on M. The identity of M will be denoted by 1M, or sim-
ply by 1 when the context is clear. Throughout, ⋁i∈IMi denotes the von Neumann
algebra generated by the family of von Neumann algebras {Mi}i∈I ⊂ M for I ⊂ Z.
If M is abelian and acts on a separable Hilbert space, then (M, ψ) is isomorphic to
(L∞(Ω,Σ, µ), ∫Ω ⋅ dµ) for some standard probability space (Ω,Σ, µ).

Definition 2.2.1. An endomorphism α of a noncommutative probability space (M, ψ)
is a ∗- homomorphism onM satisfying the following additional properties:

(i) ψ ○ α = ψ (stationarity);

(ii) α and the modular automorphism group σψt commute for all t ∈ R (modularity).

The set of endomorphisms of (M, ψ) is denoted by End(M, ψ). We note that an
endomorphism of (M, ψ) is automatically injective. In this paper, we will chiefly work
with the automorphisms of (M, ψ) denoted by Aut(M, ψ).

Note that α ∈ End(M, ψ) automatically satisfies

α(1M) = 1M (unitality).

Indeed, the *-homomorphism property and stationarity of α entails

ψ((α(1M) − 1M)
∗(α(1M) − 1M)) = 0.

Now the faithfulness of ψ ensures α(1M) − 1M = 0.

Definition 2.2.2. Let (M, ψ) and (N , φ) be two noncommutative probability spaces.
A linear map T ∶M → N is called a (ψ,φ)-Markov map if the following conditions are
satisfied:

(i) T is completely positive;
(ii) T is unital;
(iii) φ ○ T = ψ;

(iv) T ○ σψt = σ
φ
t ○ T , for all t ∈ R.

Here σψ and σφ denote the modular automorphism groups of (M, ψ) and (N , φ),
respectively. If (M, ψ) = (N , φ), we say that T is a ψ-Markov map on M. Conditions
(i) to (iii) imply that a Markov map is automatically normal. The condition (iv) is
equivalent to the condition that a unique Markov map T ∗∶ (N , φ)→ (M, ψ) exists such
that

ψ(T ∗(y)x) = φ(y T (x)) (x ∈M, y ∈ N ).

The Markov map T ∗ is called the adjoint of T and T is called self-adjoint if T = T ∗.
We note that condition (iv) is automatically satisfied whenever ψ and φ are tracial, in
particular for abelian von Neumann algebrasM and N . Furthermore, we note that any
T ∈ End(M, ψ) is automatically a ψ-Markov map and, in particular, any T ∈ Aut(M, ψ)
is a ψ-Markov map with adjoint T ∗ = T −1.
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We recall for the convenience of the reader the definition of conditional expectations
in the present framework of noncommutative probability spaces.

Definition 2.2.3. Let (M, ψ) be a noncommutative probability space, and N be a von
Neumann subalgebra ofM. A linear map E ∶M→ N is called a conditional expectation
if it satisfies the following conditions:

(i) E(x) = x for all x ∈ N ;
(ii) ∥E(x)∥ ≤ ∥x∥ for all x ∈M;
(iii) ψ ○E = ψ.

Such a conditional expectation exists if and only if N is globally invariant under
the modular automorphism group of (M, ψ) (see [Ta72], [Ta79] and [Ta03]). The von
Neumann subalgebra N is called ψ-conditioned if this condition is satisfied. Note that
such a conditional expectation is automatically normal and uniquely determined by
ψ. In particular, a conditional expectation is a Markov map and satisfies the module
property E(axb) = aE(x)b for a, b ∈ N and x ∈M.

2.3. Noncommutative independence and Markovianity. We recall some equiva-
lent properties as they serve to define commuting squares in subfactor theory (see for
example [GHJ89, JS97, Po89]) and as they are familiar from conditional independence
in classical probability.

Proposition 2.3.1. LetM0,M1,M2 be ψ-conditioned von Neumann subalgebras of the
probability space (M, ψ) such thatM0 ⊂ (M1∩M2). Then the following are equivalent:

(i) EM0(xy) = EM0(x)EM0(y) for all x ∈M1 and y ∈M2;
(ii) EM1EM2 = EM0;
(iii) EM1(M2) =M0;
(iv) EM1EM2 = EM2EM1 and M1 ∩M2 =M0.

In particular, it holds that M0 =M1 ∩M2 if one and thus all of these four assertions
are satisfied.

Proof. The case of tracial ψ is proved in [GHJ89, Prop. 4.2.1.]. The non-tracial case
follows from this, after some minor modifications of the arguments therein. □

Definition 2.3.2. The inclusions

M2 ⊂ M

∪ ∪

M0 ⊂ M1

as given in Proposition 2.3.1 are said to form a commuting square (of von Neumann
algebras) if one (and thus all) of the equivalent conditions (i) to (iv) are satisfied in
Proposition 2.3.1.

Notation 2.3.3. We write I < J for two subsets I, J ⊂ Z if i < j for all i ∈ I and j ∈ J .
The cardinality of I is denoted by ∣I ∣. For N ∈ Z, we denote by I +N the shifted set
{i +N ∣ i ∈ I}. Finally, I(Z) denotes the set of all ‘intervals’ of Z, i.e. sets of the form
[m,n] ∶= {m,m + 1, . . . , n}, [m,∞) ∶= {m,m + 1, . . .} or (−∞,m] ∶= {. . . ,m − 1,m} for
−∞ ≤m ≤ n <∞.
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We next address the basic notions of Markovianity in noncommutative probability.
Commonly, Markovianity is understood as a property of random variables relative to
a filtration of the underlying probability space. Our investigations from the viewpoint
of distributional invariance principles reveal that the phenomenon of ‘Markovianity’
emerges without reference to any stochastic process already on the level of a family of
von Neumann subalgebras, indexed by the partially ordered set of all ‘intervals’ I(Z).
As commonly the index set of a filtration is understood to be totally ordered [Ve17],
we refer to such families with partially ordered index sets as ‘local filtrations’.

Definition 2.3.4. A family of ψ-conditioned von Neumann subalgebrasM● ≡ {MI}I∈I(Z)
of the probability space (M, ψ) is called a local filtration (of (M, ψ)) if

I ⊂ J Ô⇒ MI ⊂MJ . (Isotony)

The isotony property ensures that one has the inclusions

MI ⊂ M

∪ ∪

MK ⊂ MJ

for I, J,K ∈ I(Z) withK ⊂ (I∩J). Finally, letN● ≡ {NI}I∈I(Z) be another local filtration
of (M, ψ). Then N● is said to be coarser thanM● if NI ⊂MI for all I ∈ I(Z) and we
denote this by N● ≺M●. Occasionally we will address N● also as a local subfiltration of
M●.

Definition 2.3.5. LetM● ≡ {MI}I∈I(Z) be a local filtration of (M, ψ). M● is said to
be Markovian if the inclusions

M(−∞,n] ⊂ M

∪ ∪

M[n,n] ⊂ M[n,∞)

form a commuting square for each n ∈ Z.

Cast as commuting squares, Markovianity of the local filtrationM● has many equiv-
alent formulations, see Proposition 2.3.1. In particular, it holds that

EM
(−∞,n]

EM
[n,∞)
= EM

[n,n]
for all n ∈ Z. (M’)

Here EMI
denotes the ψ-preserving normal conditional expectation fromM ontoMI .

2.4. Noncommutative stationary processes and dilations. We introduce bilat-
eral noncommutative stationary processes, as they underlie the approach to distri-
butional invariance principles in [Kö10, GK09]. Furthermore we present dilations of
Markov maps using Kümmerer’s approach to noncommutative stationary Markov pro-
cesses [Kü85]. The existence of such dilations is actually equivalent to the factoraliz-
ability of Markov maps (see [AD06] and [HM11]).

Definition 2.4.1. A bilateral stationary process (M, ψ,α,A0) consists of a probabil-
ity space (M, ψ), a ψ-conditioned subalgebra A0 ⊂ M, and an automorphism α ∈
Aut(M, ψ). The sequence

(ιn)n∈Z∶ (A0, ψ0)→ (M, ψ), ιn ∶= α
n∣A0 = α

nι0,
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is called the sequence of random variables associated to (M, ψ,α,A0). Here ψ0 denotes
the restriction of ψ fromM to A0 and ι0 denotes the inclusion map of A0 inM.

The stationary process (M, ψ,α,A0) is called minimal if

⋁
i∈Z
αi(A0) =M.

Definition 2.4.2. The (not necessarily minimal) stationary process (M, ψ,α,A0) is
called a (bilateral noncommutative) stationary Markov process if its canonical local
filtration

{AI ∶=⋁
i∈I

αi(A0)}I∈I(Z)

is Markovian. If this process is minimal, then the endomorphism α is also called a
Markov shift with generator A0. Furthermore, the associated ψ0-Markov map T = ι∗0αι0
on A0 is called the transition operator of the stationary Markov process. Here ι0 denotes
the inclusion map of A0 inM, and ψ0 is the restriction of ψ to A0.

The next lemma gives a simplified condition to check that a bilateral stationary
process is a Markov process.

Lemma 2.4.3. Let (M, ψ,α,A0) be a bilateral stationary process with canonical local
filtration {AI ∶= ⋁i∈I αi(A0)}I∈I(Z). Suppose

P(−∞,0]P[0,∞) = P[0,0],

where PI denotes the ψ-preserving normal conditional expectation from M onto AI .
Then {AI}I∈I(Z) is a local Markov filtration and (M, ψ,α,A0) is a bilateral stationary
Markov process.

Proof. For all k ∈ Z and I ∈ I(Z), we have αkPI = PI+kαk (see [Kü85, Remark 2.1.4]).
Hence, for each n ∈ Z,

P(−∞,0]P[0,∞) = P[0,0] ⇐⇒ αnP(−∞,0]P[0,∞)α
−n = αnP[0,0]α

−n

⇐⇒ P(−∞,n]P[n,∞) = P[n,n],

which is the required Markovianity for the local filtration {AI}I∈I(Z). □

Definition 2.4.4. [Kü85, Definition 2.1.1] Let (A, φ) be a probability space. A φ-
Markov map T on A is said to admit a (bilateral state-preserving) dilation if there exists
a probability space (M, ψ), an automorphism α ∈ Aut(M, ψ) and a (φ,ψ)-Markov map
ι0 ∶ A→M such that, for all n ∈ N0,

T n = ι∗0α
nι0.

Such a dilation of T is denoted by the quadruple (M, ψ,α, ι0) and is said to be minimal
if M = ⋁n∈Zαnι0(A). (M, ψ,α, ι0) is called a dilation of first order if the equality
T = ι∗0αι0 alone holds.

Actually it follows from the case n = 0 that the (φ,ψ)-Markov map ι0 is a random
variable from (A, φ) to (M, ψ) such that ι0ι∗0 is the ψ-preserving conditional expectation
fromM onto ι0(A).
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Definition 2.4.5. [Kü85, Definition 2.2.4] The dilation (M, ψ,α, ι0) of the φ-Markov
map T on A (as introduced in Definition 2.4.4) is said to be a (bilateral state-preserving)
Markov dilation if the local filtration {AI ∶= ⋁n∈I αnι0(A)}I∈I(Z) is Markovian.

Remark 2.4.6. A dilation of a φ-Markov map T on A may not be a Markov dilation.
This is discussed in [KS83, Section 3] where it is shown that Varilly has constructed
a dilation in [Va81] which is not a Markov dilation. We are grateful to B. Kümmerer
for bringing this to our attention [Kü21]. Note that this does not contradict the result
that the existence of a dilation and the existence of a Markov dilation are equivalent
(see [HM11, Theorem 4.4] or [KKW20, Theorem 2.6.8]).

Definition 2.4.7. [Kü85, Definition 4.1.3] Let (A, φ) be a probability space and T be
a ϕ-Markov map on A. A dilation of first order (M, ψ,α, ι0) of T is called a tensor
dilation if the conditional expectation ι0ι∗0 ∶ M → ι0(A) is of tensor type, that is,
there exists a von Neumann subalgebra C ofM with faithful normal state χ such that
M = ι0(A)⊗ C and (ι0ι∗0)(ι0(a)⊗ x) = χ(x)a for all a ∈ A, x ∈ C.

Let us next relate the above bilateral notions of dilations and stationary processes. It
is immediate that a dilation (M, ψ,α, ι0) of the φ-Markov map T on A gives rise to the

stationary process (M, ψ,α, ι0(A)). Furthermore this stationary process is Markovian if
and only if the dilation is a Markov dilation, as evident from the definitions. Conversely,
a stationary Markov process yields a dilation (and thus a Markov dilation) as it was
shown by Kümmerer, stated below for the convenience of the reader.

Proposition 2.4.8. [Kü85, Proposition 2.2.7] Let (M, ψ,α,A0) be a bilateral non-
commutative stationary Markov process and T = ι∗0αι0 be the corresponding transition
operator where ι0 is the inclusion map of A0 into M. Then (M, ψ,α, ι0) is a dilation
of T . In other words, the following diagram commutes for all n ∈ N0:

(A0, ψ0) (A0, ψ0)

(M, ψ) (M, ψ)

Tn

ι0 ι∗0

αn

.

Here ψ0 denotes the restriction of ψ to A0.

We close this subsection by providing a noncommutative notion of operator-valued
Bernoulli shifts. The definition of such shifts stems from investigations of Kümmerer on
the structure of noncommutative Markov processes in [Kü85], and such shifts can also
be seen to emerge from the noncommutative extended de Finetti theorem in [Kö10].

In the following, Mβ ∶= {x ∈M ∣ β(x) = x} denotes the fixed point algebra of β ∈
Aut(M, ψ). Note thatMβ is automatically a ψ-conditioned von Neumann subalgebra.

Definition 2.4.9. The minimal stationary process (M, ψ, β,B0) with canonical local
filtration {BI = ⋁i∈I β

i
0(B0)}I∈I(Z) is called a bilateral noncommutative Bernoulli shift

with generator B0 ifMβ ⊂ B0 and

BI ⊂ M

∪ ∪

Mβ ⊂ BJ
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forms a commuting square for any I, J ∈ I(Z) with I ∩ J = ∅.

It is easy to see that a noncommutative Bernoulli shift (M, ψ, β,B0) is a minimal
stationary Markov process where the corresponding transition operator ι∗0βι0 is a condi-
tional expectation (ontoMβ, the fixed point algebra of β). Here ι0 denotes the inclusion
map of B0 intoM.

3. Markovianity from Representations of F

We show that bilateral stationary Markov processes can be obtained from representa-
tions of the Thompson group F in the automorphisms of a noncommutative probability
space. Most of the results in this section follow closely those of [KKW20, Section 4],
suitably adapted to the bilateral case.

Let us fix some notation, as it will be used throughout this section. We assume that
the probability space (M, ψ) is equipped with the representation ρ∶F → Aut(M, ψ).
For brevity of notion, especially in proofs, the represented generators of F are also
denoted by

αn ∶= ρ(gn) ∈ Aut(M, ψ),

with fixed point algebras given by Mαn ∶= {x ∈ M ∣ αn(x) = x}, for 0 ≤ n < ∞. Of
course,Mαn =Mα−1n . Furthermore the intersections of fixed point algebras

Mn ∶= ⋂
k≥n+1

Mαk

give the tower of von Neumann subalgebras

Mρ(F ) ⊂M0 ⊂M1 ⊂M2 ⊂ . . . ⊂M∞ ∶= ⋁
n≥0

Mn ⊂M.

From the viewpoint of noncommutative probability theory, this tower provides a filtra-
tion of the noncommutative probability space (M, ψ). The canonical local filtration
of a stationary process (M, ψ,α0,A0) will be seen to be a local subfiltration of a local
Markov filtration whenever the ψ-conditioned von Neumann subalgebra A0 is well-
localized, to be more precise: contained in the intersection of fixed point algebrasM0.
It is worthwhile to emphasize that, depending on the choice of the generator A0, the
canonical local filtration of this stationary process may not be Markovian. Subsec-
tion 3.2 investigates in detail conditions under which the canonical local filtration of a
stationary process (M, ψ,α0,A0) is Markovian.

3.1. Representations with a generating property. An immediate consequence of
the relations between generators of the Thompson group F is the adaptedness of the
endomorphism α0 to the tower of (intersected) fixed point algebras:

α0(Mn) ⊂Mn+1 for all n ∈ N0.

To see this, note that if x ∈Mn and k ≥ n+ 2, then αkα0(x) = α0αk−1(x) = α0x. On the
other hand, if x ∈Mn and k ≥ n, then αkα−10 (x) = α

−1
0 αk+1(x) = α

−1
0 (x). This gives that

α−10 (Mn) ⊂Mn−1 for n ≥ 1. Hence, actually α0(Mn) =Mn+1 for all n ∈ N0. We also
note that α−10 (M0) ⊂M0.
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Thus, generalizing terminology from classical probability, the random variables

ι0 ∶= Id ∣M0 ∶M0 →M0 ⊂M

ι1 ∶= α0∣M0 ∶M0 →M1 ⊂M

ι2 ∶= α
2
0∣M0 ∶M0 →M2 ⊂M

⋮

ιn ∶= α
n
0 ∣M0 ∶M0 →Mn ⊂M

are adapted to the filtration M0 ⊂M1 ⊂M2 ⊂ . . . and α0 is the time evolution of the
stationary process (M, ψ,α0,M0). An immediate question is whether a representation
of the Thompson group F restricts to the von Neumann subalgebraM∞.

Definition 3.1.1. The representation ρ∶F → Aut(M, ψ) is said to have the generating
property ifM∞ =M.

As shown in Proposition 3.1.5 below, this generating property entails that each in-
tersected fixed point algebra Mn = ⋂k≥n+1M

αk equals the single fixed point algebra
Mαn+1 . Thus the generating property tremendously simplifies the form of the tower
M0 ⊂M1 ⊂ . . ., and our next result shows that this can always be achieved by restric-
tion.

Proposition 3.1.2. The representation ρ ∶ F → Aut(M, ψ) restricts to the generating
representation ρgen ∶ F → Aut(M∞, ψ∞) such that αn(M∞) ⊂M∞ and EM∞

EMαn =

EMαnEM∞
for all n ∈ N0. Here ψ∞ denotes the restriction of the state ψ to M∞.

EMαn and EM∞
denote the unique ψ-preserving normal conditional expectations onto

Mαn and M∞ respectively.

Proof. We show that αi(Mn) ⊂ Mn+1 for all i, n ≥ 0. Let x ∈ Mn. If i ≥ n + 1 then
αi(x) = x is immediate from the definition ofMn. If i < n + 1 then, using the relations
for the generators of the Thompson group, αi(x) = αiαk+1(x) = αk+2αi(x) for any k ≥ n,
thus αi(x) ∈Mn+1. Consequently αi maps ⋃n≥0Mn into itself for any i ∈ N0. It is also
easily verified that α−1i (Mn) ⊂Mn for all i and n ≥ 0. Now a standard approximation
argument shows thatM∞ is invariant under αi and α−1i for any i ∈ N0. Consequently the
representation ρ restricts toM∞ and, of course, this restriction ρgen has the generating
property.

Since M∞ is globally invariant under the modular automorphism group of (M, ψ),
there exists the (unique) ψ-preserving normal conditional expectation EM∞

from M
ontoM∞. In particular, ρgen(gn) = αn∣M∞

commutes with the modular automorphism
group of (M∞, ψ∞) which ensures ρgen(gn) ∈ Aut(M∞, ψ∞). Finally that EM∞

and
EMαn commute is concluded from

EM∞
αnEM∞

= αnEM∞
,

which implies EMαnEM∞
= EM∞

EMαn by routine arguments, and an application of the
mean ergodic theorem (see for example [Kö10, Theorem 8.3]),

EMαn = lim
N→∞

1

N

N

∑
i=1

αin,

where the limit is taken in the pointwise strong operator topology. □
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Lemma 3.1.3. With the notations as above, Mk =M
αk+1 ∩M∞ for all k ∈ N0.

Proof. For the sake of brevity of notation, let Qn = EMαn denote the ψ-preserving
normal conditional expectation from M onto Mαn . Let us first make the following
observation: if x ∈M∞, then Qn(x) ∈M∞ for every n ∈ N0. Indeed, by Proposition
3.1.2, x ∈ M∞ implies αn(x) ∈ M∞ and thus 1

M ∑
M
i=1α

i
n(x) ∈ M∞ for all M ≥ 1. As

Qn(x) = limM→∞
1
M ∑

M
i=1α

i
k(x) in the strong operator topology, this ensures Qn(x) ∈

M∞.
By the definition of Mk and M∞, it is clear that Mk ⊂M

αk+1 ∩M∞. In order to
show the reverse inclusion, it suffices to show that QnQk∣M∞

= Qk∣M∞
for 0 ≤ k < n <∞.

We claim that, for 0 ≤ k < n,

QnQk∣M∞
= Qk∣M∞

⇐⇒ QkQnQk∣M∞
= Qk∣M∞

.

Indeed this equivalence is immediate from

ψ((QnQk −Qk)(y
∗)(QnQk −Qk)(x)) = ψ(y

∗(QkQn −Qk)(QnQk −Qk)(x))

= ψ(y∗(Qk −QkQnQk)(x))

for all x, y ∈ M∞. We are left to prove QkQnQk∣M∞
= Qk∣M∞

for k < n. For this
purpose we express the conditional expectations Qk and Qn as mean ergodic limits in
the pointwise strong operator topology and calculate

QkQnQk∣M∞
= lim
M→∞

lim
N→∞

1

MN

M

∑
i=1

N

∑
j=1

αikα
j
nQk∣M∞

= lim
M→∞

lim
N→∞

1

MN

M

∑
i=1

N

∑
j=1

αjn+iα
i
kQk∣M∞

= lim
M→∞

lim
N→∞

1

MN

M

∑
i=1

N

∑
j=1

αjn+iQk∣M∞

= lim
M→∞

1

M

M

∑
i=1

Qn+iQk∣M∞
= Qk∣M∞

.

The last equality is ensured as x ∈M∞ implies that Qk(x) ∈M∞, hence as Mρ(F ) ⊂

M0 ⊂ . . . ⊂M∞ = ∨n≥0Mn, there exists sufficiently large i0 such that Qn+iQk(x) = Qk(x)
for all i ≥ i0. Thus

lim
M→∞

1

M

M

∑
i=1

Qn+iQk∣M∞
= IdQk∣M∞

in the pointwise strong operator topology. □

Corollary 3.1.4. With notations as introduced at the beginning of the present Section
3, the following set of inclusions forms a commuting square for every n ∈ N0:

Mαn+1 ⊂ M

∪ ∪

Mn ⊂ M∞
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Proof. Let Qn and EM∞
be the ψ-preserving normal conditional expectations from

M onto Mαn and M∞ respectively for n ∈ N0. For n ∈ N0, by Proposition 3.1.2,
Qn+1EM∞

= EM∞
Qn+1 and by Lemma 3.1.3,Mn =M

αn+1 ∩M∞. By (iv) of Proposition
2.3.1, we get a commuting square. □

Proposition 3.1.5. If the representation ρ ∶ F → Aut(M, ψ) has the generating prop-
erty then the following equality holds for all n ∈ N0:

Mn =M
ρ(gn+1).

In other words, one has the tower of fixed point algebras

Mρ(F+) ⊂Mρ(g0) ⊂Mρ(g1) ⊂Mρ(g2) ⊂ . . . ⊂M = ⋁
n≥0

Mρ(gn).

Proof. If the representation ρ is generating, thenM∞ =M. HenceMn =M
αn+1 for all

n ∈ N0 as a consequence of Lemma 3.1.3. □

The following intertwining property will be crucial for obtaining stationary Markov
processes from representations of the Thompson group F .

Proposition 3.1.6. Suppose ρ∶F → Aut(M, ψ) is a (not necessarily generating) rep-
resentation of F . Then with αn = ρ(gn), the following equality holds:

αkQn = Qn+1αk

for all 0 ≤ k < n <∞. Here Qn denotes the ψ-preserving normal conditional expectation
fromM onto the fixed point algebraMαn of the represented generator αn ∈ Aut(M, ψ).

Proof. An application of the mean ergodic theorem and the relations between the gen-
erators of the Thompson group F yield that, for k < n,

αkQn = lim
N→∞

1

N

N−1

∑
i=1

αkα
i
n = lim

N→∞

1

N

N−1

∑
i=0

αin+1αk = Qn+1αk.

Here the limits are taken in the pointwise strong operator topology. □

3.2. Commuting squares and Markovianity for stationary processes. Given
the representation ρ∶F → Aut(M, ψ), with represented generators αn ∶= ρ(gn), for
n ∈ N0, we recall that

Mn = ⋂
k≥n+1

Mαk ,

denotes the intersected fixed point algebras. Throughout this section, let A0 be a
ψ-conditioned von Neumann subalgebra of M0. Then (M, ψ,α0,A0) is a (bilateral
noncommutative) stationary process with generating algebra A0 (as introduced in Def-
inition 2.4.1). Its canonical local filtration is denoted by A● ≡ {AI}I∈I(Z), where

AI ∶=⋁
i∈I

αi0(A0),

and an ‘interval’ I ∈ I(Z) is written as [m,n] ∶= {i ∈ Z ∣ m ≤ i ≤ n} or [m,∞) ∶= {i ∈
Z ∣ m ≤ i} or (−∞, n] ∶= {i ∈ Z ∣ i ≤ n}. Furthermore PI will denote the ψ-preserving
normal conditional expectation from M onto AI . Note that the endomorphism α0

acts compatibly on the local filtration, i.e. α0(AI) = AI+1 for all I ∈ I(Z), where
I + 1 ∶= {i + 1 ∣ i ∈ I}.
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We record a simple, but important, observation obtained from the relations of F on
stationary processes to which we will frequently appeal.

Proposition 3.2.1. Let (M, ψ,α0,A0) be the (bilateral noncommutative) stationary
process with A0 a ψ- conditioned subalgebra of M0. Then it holds that A(−∞,n] ⊂Mn

for all n ∈ N0.

Proof. As A0 ⊂M0, it holds that αn(x) = x for any x ∈ A0 and n ∈ N. Thus using the
defining relations of F we get for 0 ≤ k ≤ n < ℓ,

αℓα
k
0(x) = α

k
0αℓ−k(x) = α

k
0(x).

On the other hand, for k < 0 and ℓ ≥ 1,

αℓα
k
0(x) = α

k
0αℓ−k(x) = α

k
0(x).

Hence

A(−∞,n] = ⋁
i∈(−∞,n]

αi0(A0) ⊂M0 ⊂Mn, n ∈ N0.

□

We next observe that the generating property of the representation ρ can be concluded
from the minimality of a stationary process.

Proposition 3.2.2. Suppose the representation ρ ∶ F → Aut(M, ψ) and A0 ⊂M0 are
given. If the stationary process (M, ψ,α0,A0) is minimal, then ρ is generating.

Proof. For the stationary process (M, ψ,α0,A0), recall that A(−∞,∞) = ⋁i∈Zα
i
0(A0)

and minimality implies A(−∞,∞) = M. By Proposition 3.2.1, A(−∞,n] ⊂ Mn for all
n ∈ N0. Thus M = ⋁n≥0A(−∞,n] ⊂ ⋁n≥0Mn = M∞. We conclude from this that the
representation ρ has the generating property, i.e.M∞ =M. □

In the following results, it is not assumed that the stationary process is minimal or
that the representation ρ is generating unless explicitly mentioned.

Theorem 3.2.3. Suppose ρ∶F → Aut(M, ψ) is a representation with αn ∶= ρ(gn) as
before. Let A0 ⊂M0 and A[0,∞) ∶= ⋁n∈N0

αn0(A0) be von Neumann subalgebras of (M, ψ)
such that the inclusions

Mα1 ⊂ M

∪ ∪

A0 ⊂ A[0,∞)

form a commuting square. Then the family of von Neumann subalgebras A● ≡ {AI}I∈I(Z),

with

AI ∶=⋁
i∈I

αi0(A0),

is a local Markov filtration and (M, ψ,α0,A0) is a (bilateral) stationary Markov process.
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Proof. Let Qn and PI denote the ψ-preserving normal conditional expectations from
M ontoMαn and AI respectively. Note that the commuting square condition implies
Q1P[0,∞) = P[0,0]. From Proposition 3.2.1, A(−∞,0] ⊂M0 ⊂M

α1 . Hence we get

P(−∞,0]P[0,∞) = P(−∞,0]Q1P[0,∞) (since A(−∞,0] ⊂M
α1)

= P(−∞,0]P[0,0]P[0,∞) (by commuting square condition)

= P[0,0] (as A[0,0] ⊂ A(−∞,0] and A[0,0] ⊂ A[0,∞)).

Thus, by Lemma 2.4.3, {AI}I∈I(Z) is a local Markov filtration and (M, ψ,α0,A0) is a
bilateral stationary Markov process. □

Corollary 3.2.4. Suppose ρ∶F → Aut(M, ψ) is a representation with α0 = ρ(g0). Then
the quadruple (M, ψ,α0,M0) is a bilateral stationary Markov process.

Proof. We know from Corollary 3.1.4 that the following is a commuting square:

Mα1 ⊂ M

∪ ∪

M0 ⊂ M∞

.

Let {MI}I∈I(Z) denote the local filtration given by MI = ⋁i∈I α
i
0(M0) and PI be the

corresponding conditional expectations. As M(−∞,n] ⊂Mn for all n ∈ N0, it is easily
verified thatM(−∞,∞) ⊂M∞. Let P0 ∶= P[0,0] be the ψ-preserving conditional expecta-
tion fromM ontoM0. Then from the commuting square above, we have EM∞

Q1 = P0,
where EM∞

is of course the conditional expectation onto M∞. This in turn gives
P(−∞,∞)Q1 = P(−∞,∞)EM∞

Q1 = P(−∞,∞)P0 = P0. Hence we get that M0 is a von Neu-
mann subalgebra ofM such that

Mα1 ⊂ M

∪ ∪

M0 ⊂ M[0,∞)

forms a commuting square. By Theorem 3.2.3, (M, ψ,α0,M0) is a stationary Markov
process. □

Corollary 3.2.5. Suppose ρ∶F → Aut(M, ψ) is a representation with αm = ρ(gm), for
m ∈ N0. Then the quadruple (M, ψ,αm,Mn) is a bilateral stationary Markov process
for any 0 ≤m ≤ n <∞.

Proof. Consider the representation ρm,n ∶= ρ○shm,n∶F → Aut(M, ψ) where shm,n denotes
the (m,n)-partial shift as introduced in Definition 2.1.1. We observe that ρm,n(g0) =
ρ(gm) and ρm,n(gk) = ρ(gn+k) for all k ≥ 1. In particular we get

⋂
k≥1

Mρm,n(gk) = ⋂
k≥1

Mρ(gk+n) = ⋂
k≥n+1

Mρ(gk) =Mn.

Thus Corollary 3.2.4 applies for the (m,n)-shifted representation ρm,n, and its applica-
tion completes the proof. □

Corollary 3.2.6. Suppose ρ∶F → Aut(M, ψ) is a generating representation. Then the
quadruple (M, ψ,αm,Mαn+1) is a bilateral stationary Markov process for any 0 ≤ m ≤
n <∞.
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Proof. If the representation ρ is generating, thenMαn+1 =Mn. Hence the result follows
by Corollary 3.2.5. □

Theorem 3.2.7. Let the probability space (M, ψ) be equipped with the representation
ρ∶F → Aut(M, ψ) and the local filtration A● ≡ {AI}I∈I(Z), where AI ∶= ⋁i∈I ρ(g

i
0)(A0)

for some ψ-conditioned von Neumann subalgebra A0 of M0 = ⋂k≥1M
ρ(gk). Further

suppose the inclusions

Mρ(gk+1) ⊂ M

∪ ∪

A[0,k] ⊂ A[0,∞)

form a commuting square for every k ≥ 0. Then each cell in the following infinite
triangular array of inclusions is a commuting square:

⋯ ⊂ A(−∞,−2] ⊂ A(−∞,−1] ⊂ A(−∞,0] ⊂ A(−∞,1] ⊂ A(−∞,2] ⊂ ⋯ ⊂ A(−∞,∞)
∪ ∪ ∪ ∪ ∪ ⋯ ∪
⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
∪ ∪ ∪ ∪ ∪ ⋯ ∪

A[−2,−2] ⊂ A[−2,−1] ⊂ A[−2,0] ⊂ A[−2,1] ⊂ A[−2,2] ⊂ ⋯ ⊂ A[−2,∞)
∪ ∪ ∪ ∪ ∪

A[−1,−1] ⊂ A[−1,0] ⊂ A[−1,1] ⊂ A[−1,2] ⊂ ⋯ ⊂ A[−1,∞)
∪ ∪ ∪ ∪
A[0,0] ⊂ A[0,1] ⊂ A[0,2] ⊂ ⋯ ⊂ A[0,∞)

∪ ∪ ∪
A[1,1] ⊂ A[1,2] ⊂ ⋯ ⊂ A[1,∞)

∪ ∪
A[2,2] ⊂ ⋯ ⊂ A[2,∞)

∪
⋮

.

In particular, A● is a local Markov filtration.

Proof. All claimed inclusions in the triangular array are clear from the definition of
A[m,n]. We recall from Proposition 3.2.1 that αk0(A0) ⊂ M

αn+1 for k ≤ n. Hence
A[m,n] ⊂ M

αn+1 for all m ≤ n. Next we show that, for −∞ < m < n < ∞, the cell of
inclusions

A[m,n] ⊂ A[m,n+1]
∪ ∪

A[m+1,n] ⊂ A[m+1,n+1]

forms a commuting square. So, as PI denotes the normal ψ-preserving conditional
expectation fromM onto AI , we need to show

P[m,n]P[m+1,n+1] = P[m+1,n].

As αm0 PIα
−m
0 = PI+m for all m ∈ Z, it suffices to show that, for all n ∈ N,

P[0,n]P[1,n+1] = P[1,n]

or, equivalently,

P[0,n]α0P[0,n] = α0P[0,n−1].
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We calculate

P[0,n]α0P[0,n] = P[0,n]Qn+1α0P[0,n]

= P[0,n]α0QnP[0,n]

= P[0,n]α0QnP[0,∞)P[0,n]

= P[0,n]α0P[0,n−1]P[0,n]

= P[0,n]α0P[0,n−1]

= α0P[0,n−1].

Here we have used P[0,n] = P[0,n]Qn+1, the intertwining properties of α0 and the
commuting square assumption QnP[0,∞) = P[0,n−1]. Thus each cell of inclusions in this
triangular array forms a commuting square. □

More generally, we may consider a probability space which is equipped both with
a local filtration and a representation of the Thompson group F , and formulate com-
patiblity conditions between the local filtration and the representation such that one
obtains rich commuting square structures.

Corollary 3.2.8. Suppose the probability space (M, ψ) is equipped with a local filtration
N● ≡ {NI}I∈I(Z) and a representation ρ∶F → Aut(M, ψ) such that

(i) ρ(g0)(NI) = NI+1 for all I ∈ I(Z) (compatibility),

(ii) N[0,n] ⊂Mρ(gn+1) for all n ∈ N0 (adaptedness),
(iii) the inclusions

Mρ(gk+1) ⊂ M

∪ ∪

N[0,k] ⊂ N[0,∞)

form a commuting square for all k ∈ N0.

Then each cell in the following infinite triangular array of inclusions is a commuting
square:

⋯ ⊂ N(−∞,−2] ⊂ N(−∞,−1] ⊂ N(−∞,0] ⊂ N(−∞,1] ⊂ N(−∞,2] ⊂ ⋯ ⊂ N(−∞,∞)
∪ ∪ ∪ ∪ ∪ ⋯ ∪
⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
∪ ∪ ∪ ∪ ∪ ⋯ ∪

N[−2,−2] ⊂ N[−2,−1] ⊂ N[−2,0] ⊂ N[−2,1] ⊂ N[−2,2] ⊂ ⋯ ⊂ N[−2,∞)
∪ ∪ ∪ ∪ ∪

N[−1,−1] ⊂ N[−1,0] ⊂ N[−1,1] ⊂ N[−1,2] ⊂ ⋯ ⊂ N[−1,∞)
∪ ∪ ∪ ∪
N[0,0] ⊂ N[0,1] ⊂ N[0,2] ⊂ ⋯ ⊂ N[0,∞)

∪ ∪ ∪
N[1,1] ⊂ N[1,2] ⊂ ⋯ ⊂ N[1,∞)

∪ ∪
N[2,2] ⊂ ⋯ ⊂ N[2,∞)

∪
⋮

.

In particular, N● is a local Markov filtration.
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Proof. Let PI be the normal ψ-preserving conditional expectation onto NI . Let αn =
ρ(gn) and Qn be the normal ψ-preserving conditional expectation ontoMαn as before.
We observe that N = N[0,0] ⊂Mα1 by the adaptedness condition (ii). This adaptedness
property also gives us N[0,n] ⊂Mαn+1 , and thus P[0,n] = P[0,n]Qn+1, for any n ∈ N0. The
rest of the proof follows the arguments used in the proof of Theorem 3.2.7. □

4. Constructions of representations of F from stationary Markov
processes

This section is about how to construct representations of the Thompson group F as
they arise in noncommutative probability theory. It will be seen that a large class of
bilateral stationary Markov processes in tensor dilation form (see Definition 2.4.7) will
give rise to representations of F . In particular, this will establish that a Markov map on
a probability space (A, φ) with A a commutative von Neumann algebra can be written
as a compressed represented generator of F .

4.1. An Illustrative Example. Let (A, φ) and (C, χ) be noncommutative probability
spaces. We have already shown in [KKW20] how to obtain a representation of the
Thompson monoid F + and a unilateral stationary Markov process on

(A⊗ C⊗N0 , φ⊗ χ⊗N0).

In general, especially for C finite dimensional, this tensor product model for a non-
commutative probability space is ‘too small’ to accommodate a representation of the
Thompson group F . Also, even though the extension

(A⊗ C⊗Z , φ⊗ χ⊗Z)

suffices to set up a bilateral extension of a unilateral stationary Markov process (see
for example [Kü85, 4.2.2]), it would still be ‘too small’ for canonically extending a
represention of the monoid F + to one of the group F .

This motivates the following model build on two given noncommutative probability
spaces (A, φ) and (C, χ). Throughout this final section, consider the infinite von Neu-
mann algebraic tensor product with respect to an infinite tensor product state given
by

(M, ψ) ∶= (A⊗ C
⊗N2

0 , φ⊗ χ
⊗N2

0).

This probability space can be equipped with a representation of the Thompson group
F . Also it can be used to set up a bilateral noncommutative Bernoulli shift and,
more generally, a bilateral stationary noncommutative Markov process. We start with
providing a representation of the Thompson group F .

For k ∈ N0, let βk be the automorphisms ofM defined on the weak*-total set of finite
elementary tensors inM as

β0
⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
∶= a⊗ ( ⊗

(i,j)∈N2
0

yi,j) with yi,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x2i+1,j if j = 0,

x2i,j−1 if j = 1,

xi,j−1 if j ≥ 2.

and
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βk
⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
∶= a⊗ ( ⊗

(i,j)∈N2
0

yi,j) with yi,j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi,j if j ≤ k − 1,

x2i+1,j if j = k,

x2i,j−1 if j = k + 1,

xi,j−1 if j ≥ k + 1.

for k ∈ N. It is evident from these two definitions that the actions of β0 and β1 are
induced from corresponding shifts on the index set N2

0, as visualized graphically in
Figure 1.

β0 =̂

⋮ ⋮ ⋮ ⋮

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

↑ i ● ● ● ● ⋯

∎ ● ● ● ● ⋯

j
Ð→

β1 =̂

⋮ ⋮ ⋮ ⋮ ⋮

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

↑ i ● ● ● ● ● ⋯

∎ ● ● ● ● ● ⋯

j
Ð→

Figure 1. Visualization of the action of the automorphisms β0 (left)
and β1 (right). Here ∎ denotes an element of A and ● denotes an element
of C, and the blue arrows indicate how the automorphisms act as shifts
when considered on the index set N2

0.

We note that the fixed point algebras Mβ0 and Mβ1 of β0 and β1 are given by,
respectively,

Mβ0 = A⊗ 1
⊗N0
C
⊗ 1

⊗N0
C
⊗ 1

⊗N0
C
⊗⋯ (4.1.1)

Mβ1 = A⊗ C⊗N0 ⊗ 1
⊗N0
C
⊗ 1

⊗N0
C
⊗⋯ (4.1.2)
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Let B0 ∶= β−10 (A ⊗ 1
⊗N0
C
⊗ C⊗N0 ⊗ 1

⊗N0
C
⊗⋯) which can be thought of as the ‘present’

von Neumann subalgebra at time n = 0 of the explicit form

⋮ ⋮ ⋮
⊗ ⊗ ⊗
1C 1C 1C

⊗ ⊗ ⊗
C 1C 1C

⊗ ⊗ ⊗
1C 1C 1C

⊗ ⊗ ⊗
A ⊗ C ⊗ 1C ⊗ 1C ⊗ ⋯

.

Proposition 4.1.1. The maps gn ↦ ρB(gn) ∶= βn, with n ∈ N0, extend multiplicatively
to a representation ρB ∶F → Aut(M, ψ) which has the generating property. Further,
(M, ψ, β0,B0) is a bilateral noncommutative Bernoulli shift with generator B0.

Proof. For 0 ≤ k < ℓ < ∞, the relations βkβℓ = βℓ+1βk are verified in a straightforward
computation on finite elementary tensors. Since ψ ○ βn = ψ, the maps gn ↦ ρB(gn) ∶=
βn extend to a representation of F in Aut(M, ψ). The generating property of this
representation will follow from the minimality of the stationary process by Proposition
3.2.2. Indeed, let BI ∶= ⋁i∈I β

i
0(B0) for I ∈ I(Z) and note that B[0,0] = B0. Clearly

BZ =M, hence the stationary process (M, ψ, β0,B0) is minimal. We are left to show
that this minimal stationary process is a bilateral noncommutative Bernoulli shift.
Clearly,Mβ0 ⊂ B0. We are left to verify the factorization

Q0(xy) = Q0(x)Q0(y)

for any x ∈ BI , y ∈ BJ whenever I∩J = ∅. Here Q0 is the ψ-preserving normal conditional
expectation fromM ontoMβ0 which is of the tensor type

Q0

⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
= a⊗ ( ⊗

(i,j)∈N2
0

χ(xi,j)1C)

for finite elementary tensors in M. Now the required factorization easily follows by
observing that distinct powers of the ‘time evolution’ β0 send elements of B0 to elements
which are supported by disjoint index sets in N2

0. □

To obtain more general representations of the Thompson group F , we can further
‘perturb’ the automorphisms βn. Here we focus on a very particular case of such
perturbations, as it will turn out to be useful when constructing representations of F
from bilateral stationary noncommutative Markov processes.

Given an automorphism γ ∈ Aut(A⊗C, φ⊗χ), let γ0 ∈ Aut(M, ψ) denote its natural
extension such that

γ0
⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
= γ(a⊗ x00)⊗ ( ⊗

(i,j)∈N2
0∖{(0,0)}

xi,j).

Furthermore, let
α0 ∶= γ0 ○ β0, αn ∶= βn (n ≥ 1).
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Proposition 4.1.2. The maps gn ↦ ρM(gn) ∶= αn, with n ∈ N0, extend multiplicatively
to a representation ρM ∶F → Aut(M, ψ) which has the generating property. Further, the
quadruple (M, ψ,α0,Mα1) is a bilateral noncommutative stationary Markov process.

Proof. For 1 ≤ k < ℓ, the relations αkαℓ = αℓ+1αk are those of the βn-s from Proposition
4.1.1. The relations α0αℓ = αℓ+1α0 for l > 0 are verified on finite elementary tensors by
a straightforward computation. Similar arguments as used in the proof of Proposition
4.1.1 ensure that the maps gn ↦ ρM(gn) ∶= αn extend multiplicatively to a representation
ρM ∶F → Aut(M, ψ). Its generating property is again immediate from the minimality of
the stationary process by Proposition 3.2.2. Finally, the Markovianity of the bilateral
stationary process (M, ψ,α0,Mα1) follows from Corollary 3.2.6. □

Given the stationary Markov process (M, ψ,α0,Mα1) (from Proposition 4.1.2), a
restriction of the generating algebra Mα1 to a von Neumann subalgebra A0 provides
a candidate for another stationary Markov process. Viewing the Markov shift α0 as
a ‘perturbation’ of the Bernoulli shift β0, the subalgebra A0 = M

β0 is an interesting
choice.

Proposition 4.1.3. The quadruple (M, ψ,α0,Mβ0) is a bilateral noncommutative sta-
tionary Markov process.

Proof. We recall from (4.1.1) that

Mβ0 = A⊗ 1
⊗N0
C
⊗ 1

⊗N0
C
⊗ 1

⊗N0
C
⊗⋯.

Let PI denote the ψ-preserving normal conditional expectation from M onto AI ∶=
⋁i∈I α

i
0(M

β0) for an interval I ⊂ Z. By Lemma 2.4.3, it suffices to verify the Markov
property

P(−∞,0]P[0,∞) = P[0,0].

For this purpose we use the von Neumann subalgebra

D0 ∶=

⋮ ⋮ ⋮

⊗ ⊗ ⊗

1C 1C 1C ⋯

⊗ ⊗ ⊗

A ⊗ C ⊗ 1C ⊗ 1C ⊗ ⋯

and the tensor shift β0 to generate the ‘past algebra’ D< ∶= ⋁i<0 β
i
0(D0) and the ‘future

algebra’ D≥ ∶= ⋁i≥0 β
i
0(D0). One has the inclusions

A(−∞,0] ⊂ D<, A[0,∞) ⊂ D≥, D< ∩D≥ =M
β0 .

Here we used for the first inclusion that α0 = γ0○β0 and thus α−10 = β
−1
0 ○γ

−1
0 . The second

inclusion is immediate from the definitions of the von Neumann algebras. Finally, the
claimed intersection property is readily deduced from the underlying tensor product
structure. Let ED< and ED≥ denote the ψ-preserving normal conditional expectations
fromM onto D< and D≥, respectively. We observe that ED<ED≥ = P[0,0] is immediately
deduced from the tensor product structure of the probability space (M, ψ). But this
allows us to compute

P(−∞,0]P[0,∞) = P(−∞,0]ED<ED≥P[0,∞) = P(−∞,0]P[0,0]P[0,∞) = P[0,0].
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□

Remark 4.1.4. The above constructed bilateral noncommutative stationary Markov
process (M, ψ,α0,Mβ0) is not minimal, as the von Neumann algebra generated by
αn0(M

β0) for all n ∈ Z is clearly contained in the subalgebra

⋮ ⋮ ⋮
⊗ ⊗ ⊗
C 1C 1C

⊗ ⊗ ⊗
C 1C 1C

⊗ ⊗ ⊗
C 1C 1C

⊗ ⊗ ⊗
A ⊗ C ⊗ C ⊗ C ⊗ ⋯

.

This subalgebra is invariant under the action of α0 = ρ(g0), but it fails to be invariant
under the action of α1 = ρ(g1). This illustrates that the von Neumann algebra of a
bilateral stationary Markov process may be ‘too small’ to carry a representation of the
Thompson group F such that its Markov shift represents the generator g0 ∈ F .

4.2. Constructions of Representations of F from stationary Markov pro-
cesses. The following theorem uses the tensor product construction of the present
section to show that automorphisms on tensor products give representations of F such
that the compressed automorphism is equal to a compressed represented generator.

Throughout this subsection we will use the following notion of an embedding for
two noncommutative probability spaces (A, φ) and (M, ψ). An embedding ι∶ (A, φ) →
(M, ψ) is a (φ,ψ)-Markov map ι∶A →M which is also a ∗-homomorphism. Further-
more, recall the notion of a dilation of first order from Definition 2.4.4.

Theorem 4.2.1. Suppose γ ∈ Aut(A⊗C, φ⊗χ) and let ι0 be the canonical embedding of
(A, φ) into (A⊗C, φ⊗χ). Then there exists a noncommutative probability space (M, ψ),
generating representations ρB, ρM ∶F → Aut(M, ψ) and an embedding κ∶ (A⊗C, φ⊗χ)→
(M, ψ) such that

(i) κι0(A) =MρB(g0),
(ii) ι∗0γ

nι0 = ι∗0κ
∗ρM(gn0 )κι0 for all n ∈ N0.

In particular, (M, ψ, ρM(g0),MρB(g0)) is a bilateral noncommutative stationary Markov
process.

Proof. We take

(M, ψ) ∶= (A⊗ C
⊗N2

0 , φ⊗ χ
⊗N2

0)

and let κ be the natural embedding of (A ⊗ C, φ ⊗ χ) into (M, ψ). We construct
two representations of the Thompson group F as done for the illustrative example in
Subsection 4.1. That is, we define the representation ρB ∶F → Aut(M, ψ) as ρB(gn) ∶=
βn for n ≥ 0 (see Proposition 4.1.1) and the representation ρM ∶F → Aut(M, ψ) as
ρM(gn) ∶= αn with α0 = γ0 ○ β0 and αn = βn for n ≥ 1 (see Proposition 4.1.2). The
generating property of these two representations ρB and ρM has already been verified
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in Propositions 4.1.1 and 4.1.1. We recall from Subsection 4.1 that γ0 is the natural
extension of γ to an automorphism on (M, ψ) which is easily seen to satisfy

κ∗γn0 κι0 = γ
nι0, (n ∈ N0). (4.2.1)

Note that for the case n = 1, the left hand side of this equation can be written as

κ∗γ0κι0 = κ
∗γ0β0κι0 = κ

∗α0κι0. (4.2.2)

Now Proposition 4.1.3 ensures that (M, ψ,α0,Mβ0) is a bilateral noncommutative
stationary Markov process with κι0(A) =Mβ0 , as claimed in (i) of the theorem. We
note that κι0(κι0)∗ is the ψ-preserving normal conditional expectation from M onto
Mβ0 = κι0(A), and by definition, the stationary Markov process (M, ψ,α0,Mβ0) has
the transition operator

T ∶= κι0(κι0)
∗α0κι0(κι0)

∗.

We observe that (4.2.1) and (4.2.2) allow us to rewrite T as follows:

T = κι0(κι0)
∗α0κι0(κι0)

∗ (4.2.3)

= κι0ι
∗
0(κ

∗α0κι0)(κι0)
∗

= κι0ι
∗
0(κ

∗γ0κι0)ι
∗
0κ
∗

= κι0ι
∗
0γι0ι

∗
0κ
∗

On the other hand, Proposition 2.4.8 gives that T satisfies

T n = κι0(κι0)
∗αn0κι0(κι0)

∗, (n ∈ N0). (4.2.4)

Hence by (4.2.3) and (4.2.4),

(κι0ι
∗
0)γ

n(κι0ι
∗
0)
∗ = [(κι0ι

∗
0)γ(κι0ι

∗
0)
∗]n

= T n = κι0(κι0)
∗αn0κι0(κι0)

∗.

Simplifying, we get
ι∗0γ

nι0 = ι
∗
0κ
∗αn0κι0 (n ∈ N0),

as claimed in (ii) of the theorem. □

This result builds on an observation related to the existence of Markov dilations
already made by Kümmerer in [Kü85, Theorem 4.2.1]: if a φ-Markov map R on A has
a tensor dilation of first order (A⊗ C, φ⊗ χ, γ, ι0), then this implies the existence of a
(Markov) dilation on the noncommutative probability space (A ⊗ C⊗Z , φ ⊗ χ⊗Z). Here
we have utilized this fact and amplified further the dilation to the noncommutative

probability space (M, ψ) = (A ⊗ C
⊗N2

0 , φ ⊗ χ
⊗N2

0), such that a representation of the
Thompson group F can be accommodated.

4.3. The Classical Case. We state a result of Kümmerer that provides a tensor di-
lation of any Markov map on a commutative von Neumann algebra. This will allow us
to obtain a representation of F as in Theorem 4.2.1.

Notation 4.3.1. The (non)commutative probability space (L, trλ) is given by the
Lebesgue space of essentially bounded functions L ∶= L∞([0,1], λ) and trλ ∶= ∫[0,1] ⋅dλ

as the faithful normal state on L. Here λ denotes the Lebesgue measure on the unit
interval [0,1] ⊂ R.
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Theorem 4.3.2 ([Kü86, 4.4.2]). Let R be a φ-Markov map on A, where A is a com-
mutative von Neumann algebra with separable predual. Then there exists γ ∈ Aut(A ⊗
L, φ⊗ trλ) such that (A⊗L, φ⊗ trλ, γ, ι0) is a Markov (tensor) dilation of R. That is,
(A⊗L, φ⊗ trλ, γ,A⊗ 1L) is a stationary Markov process, and for all n ∈ N0,

Rn = ι∗0 γ
nι0,

where ι0∶ (A, φ)→ (A⊗L, φ⊗ trλ) denotes the canonical embedding ι0(a) = a⊗1L such
that E0 ∶= ι0 ○ ι∗0 is the φ ⊗ trλ-preserving normal conditional expectation from A ⊗ L
onto A⊗ 1L.

A proof of this result on bilateral commutative stationary Markov processes is con-
tained in [Kü86]. For the convenience of the reader, this proof is made available in
[KKW20], with minor modifications to the unilateral setting of such processes. This
folkore result ensures that, in particular, every transition operator of a commutative sta-
tionary Markov process has a dilation of first order, which was the starting assumption
of Theorem 4.2.1. Consequently, we can associate to each classical bilateral stationary
Markov process a representation of the Thompson group F .

Theorem 4.3.3. Let (A, φ) be a noncommutative probability space where A is com-
mutative with separable predual, and let R be a φ-Markov map on A. There exists a
probability space (M, ψ), generating representations ρB, ρM ∶F → Aut(M, ψ), and an
embedding ι∶ (A, φ)→ (M, ψ) such that

(i) ι(A) =MρB(g0),
(ii) Rn = ι∗ρM(gn0 )ι for all n ∈ N0.

Proof. By Theorem 4.3.2, there exists γ ∈ Aut(A ⊗ L, φ ⊗ trλ) such that (A ⊗ L, φ ⊗
trλ, γ,A ⊗ 1L) is a stationary Markov process, and Rn = ι∗0 γ

nι0, for all n ∈ N0, where
ι0∶ (A, φ)→ (A⊗L, φ⊗ trλ) denotes the canonical embedding ι0(a) = a⊗ 1L.
By Theorem 4.2.1, there exists a probability space (M, ψ), generating representations

ρB, ρM ∶F → Aut(M, ψ), and an embedding κ∶ (A ⊗ L, φ ⊗ χ) → (M, ψ) such that
κ(A⊗1L) =MρB(g0) and ι∗0γ

nι0 = ι∗0κ
∗ρM(gn0 )κι0 for all n ∈ N0. The proof is completed

by taking ι ∶= κ ○ ι0, as we get

Rn = ι∗0γ
nι0

= ι∗0κ
∗ρM(g

n
0 )κι0 = ι

∗ρM(g
n
0 )ι (n ∈ N0).

□

4.4. Further Discussion of the Classical Case. We illustrate Theorem 4.3.3 for
a classical stationary Markov process taking values in the finite set [d] ∶= {1,2, . . . , d}
for some d ≥ 2, adapting the classical construction of such processes to our algebraic
approach.

Consider the unital *-algebra A ∶= Cd ≅ {f ∶ [d]→ C}. Then φ(f) ∶= ∑di=1 qif(i) defines
a faithful (normal tracial) state φ on A if and only if ∑

d
i=1 qi = 1 and 0 < qi < 1 for all
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1 ≤ i ≤ d. Now consider the transition operator R∶A→ A given by the matrix

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1 p1,2 ⋯ p1,d
p2,1 p2,2 ⋯ p2,d
⋮ ⋮ ⋱ ⋮

pd,1 pd,2 ⋯ pd,d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for some pi,j ∈ [0,1] satisfying ∑
d
j=1 pi,j = 1 for all i = 1, . . . , d. One easily verifies that

φ ○R = φ ⇐⇒
d

∑
i=1

qipi,j = qj for all 1 ≤ j ≤ d (Stationarity).

The usual Daniell-Kolmogorov construction of a stationary Markov process can now be
algebraically reformulated as follows. Here we closely follow the exposition provided in
[Kü86]. A state φ̃ is defined on the infinite algebraic tensor product ⊙ZA by

φ̃(⋯⊗ 1A ⊗ f−m ⊗ f−m+1 ⊗⋯⊗ fn−1 ⊗ fn ⊗ 1A ⊗⋯)

∶= φ(f−mR(f−m+1R(⋯fn−1R(fn)⋯))).

This state φ̃ extends to a faithful normal state φ̂ on the von Neumann algebraic tensor
product Â ∶=⊗ZA such that (Â, φ̂) is a noncommutative probability space (in the sense
of Subsection 2.2). Furthermore, the tensor right shift on ⊙ZA extends to an auto-

morphism Â of (Â, φ̂). Finally, let ι̂DK ∶A → Â denote the injection which canonically

embeds f ∈ A into the 0-th position of the infinite tensor product Â = ⊗ZA. Then it
can be verified that (Â, φ̂, T̂ , ι̂DK(A)) is a minimal stationary Markov process (in the
sense of Definition 2.4.2).

However, the Daniell-Kolmogorov construction does not seem to accommodate a rep-
resentation ρ̂∶F → Aut(Â, φ̂) with ρ̂(g0) = T̂ which satisfies the additional localization

property ι̂DK(A) ⊂ Âρ̂(gn) for n ≥ 1. This observation is connected to the well-known
fact that the Daniell-Kolmogorov construction puts all information about a stochastic
process into the state φ̂, while the automorphism T̂ is simply implemented by a bilateral
tensor shift.

Fortunately, Kümmerer’s approach to the construction of stationary Markov pro-
cesses is more feasible for finding representations of the Thompson group F with prop-
erties as addressed above. This open dynamical system approach is alternative to the
Daniell-Kolmogorov construction in classical probability; and it is actually independent
of it for finite-set-valued processes. As explained in [Kü86], this alternative approach
provides a construction which puts some information of the stationary Markov process
into the automorphism while simplifying the state (see Theorem 4.3.2). More specifi-
cally, this strategy divides the construction into two steps. One first tries to construct a
dilation of first order, and then one attempts in a second step to extend this first-order
dilation to a full (Markov) dilation (see Subsection 2.4). In fact, as already observed in
Subsection 4.2, this two-step strategy can be further extended to construct a representa-
tion of the Thompson group F which encodes the Markovianity of the given stationary
process. Let us further discuss this alternative construction for a tensor dilation for the
present example (A = Cd, φ) with transition operator R on A. For this purpose, recall
Notation 4.3.1. Similar as done for the case d = 2 in [KKW20, Example 3.4.3] and as
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detailed in [Kü86], one can construct an automorphism γ ∈ Aut(A ⊗ L, φ ⊗ trλ) such
that the φ-Markov map R on A has the dilation of first order (A ⊗ L, φ ⊗ trλ, γ, ι0).
As before, ι0 denotes the canonical embedding of (A, φ) into (A⊗L, φ⊗ trλ). In other
words, the diagram

(A, φ) (A, φ)

(A⊗L, φ⊗ trλ) (A⊗L, φ⊗ trλ)

R

ι0 ι∗0

γ

(4.4.1)

commutes.

Remark 4.4.1. All information about the φ-Markov map R on A is contained in the
φ ⊗ trλ-preserving automorphism γ on A ⊗ L. Generally, AZ ∶= ⋁n∈Z γn(A ⊗ 1L) is
strictly contained in A ⊗ L. In other words, Theorem 4.3.2 provides a non-minimal
stationary Markov process, in general. Actually, our first step in the construction of a
representation of the Thompson group F consists in finding a suitable dilation of first
order (4.4.1). Kümmerer’s Theorem 4.3.2 guarantees the existence of such dilations.
However, we refrain from further discussing the structure of these dilations of first order,
as this would go beyond the scope of the present paper.

Having arrived at this dilation of first order, several straightforward constructions of
stationary Markov processes are possible. Here we discuss those which are of relevance
for obtaining unilateral and bilateral versions of stationary Markov processes, in par-
ticular with the view of obtaining suitable representations of the Thompson group F ,
and its monoid F +, as introduced in (2.1.2).

A unilateral noncommutative stationary Markov process (M̃, ψ̃, α̃0, ι̃(A)) is obtained

by putting (M̃, ψ̃) ∶= (A⊗L⊗N0 , φ⊗ tr
⊗N0
λ ) with α̃0 ∶= γ̃0β̃0, where

β̃0(f ⊗ x0 ⊗ x1 ⊗⋯) ∶= f ⊗ 1L ⊗ x0 ⊗ x1 ⊗⋯,

γ̃0(f ⊗ x0 ⊗ x1 ⊗⋯) ∶= γ(f ⊗ x0)⊗ x1 ⊗⋯,

ι̃(f) ∶= f ⊗ 1L ⊗ 1L ⊗⋯

for f ∈ A, x0, x1, . . . ∈ L. This construction was the subject of [KKW20], as it allows to
introduce the representations ρ̃B and ρ̃M of the Thompson monoid F + by putting

ρ̃B(gk) ∶= β̃k for k ≥ 0, (4.4.2)

ρ̃M(gk) ∶= {
α̃0 for k = 0

β̃k for k > 0
, (4.4.3)

with β̃k(f ⊗ x0 ⊗⋯⊗ xk−1 ⊗ xk ⊗ xk+1 ⊗⋯) ∶= f ⊗ x0 ⊗⋯⊗ xk−1 ⊗ 1L ⊗ xk ⊗⋯. It is now
elementary to verify the relations

β̃kβ̃ℓ = β̃ℓ+1β̃k (0 ≤ k ≤ ℓ <∞), (4.4.4)

α̃kα̃ℓ = α̃ℓ+1α̃k (0 ≤ k < ℓ <∞). (4.4.5)
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The choices made in (4.4.2) are canonical for the partial shifts β̃k (see also [EGK17,
KKW20]). The choice made in (4.4.3) is also canonical from the dynamical systems
viewpoint of constructing a stationary Markov process as a local perturbation of a
Bernoulli shift. But of course, other choices are possible for ρ̃M(gk) for k ≥ 1, respect-

ing the localization property ι̃(A) ⊂ M̃ρM (gk), without violating the relations of the
Thompson monoid F + (see also [KKW20, Subsection 5.3]). This construction is nicely
illustrated in Figure 2 with actions of injective maps on the set {∎} ⊔N0. Here the set
{∎} pictures the algebra A (or an element of it), ● pictures a copy of the algebra L (or
an element of it), and disjoint unions of sets correspond to tensor products in the alge-

braic formulation. Now the action of the partial shifts β̃0 and β̃1 become injective maps
on the set {∎} ⊔ N0 which can be visualized by blue arrows. Furthermore, the action
of the local automorphism γ̃0 is visualized by a bijection on {∎}⊔N0 which moves only
those elements inside the red ellipse, as indicated in red colour in Figure 2. A similar
visualization is immediate for the actions of β̃k for k > 1. We finally note for Figure
2 that ○ visualizes the one-dimensional subalgebra C1L ⊂ L (or its element 1L) which
is actually given by the empty set ∅ on the level of sets. Here we could have omitted
these isomorphic embeddings for our visualization, but these embeddings will guide our
consecutive amplifications, in particular as relevant for canonically constructing repre-
sentations of F . As it can be clearly seen in Figure 2, the set {∎} ⊔N0 is invariant for

the injections which visualize the actions of β̃k’s and γ̃0.

⋮ ⋮ ⋮ ⋮

○ ○ ○ ○ ⋯

↑ i ○ ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

∎↺ ● ● ● ● ⋯

γ̃0 β̃0

j
Ð→

⋮ ⋮ ⋮ ⋮

○ ○ ○ ○ ⋯

↑ i ○ ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

∎ ● ● ● ● ⋯

β̃1

j
Ð→

Figure 2. Visualization on the set {∎} ⊔ N0 of the action of the one-

sided Bernoulli shift β̃0 (blue, left), and the local automorphism γ̃0 (red,

left) and the action of the one-sided Bernoulli shift β̃1 (blue, right).

Next we extend the unilateral stationary Markov process (M̃, ψ̃, α̃0, ι̃(A)) to the

bilateral stationary Markov process (M̂, ψ̂, α̂0, ι̂(A)) by putting (M̂, ψ̂) ∶= (A⊗L⊗Z , φ⊗
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tr
⊗Z
λ ) with α̂0 ∶= γ̂0β̂0, where

β̂0
⎛
⎜
⎝
⋯⊗ x−1 ⊗

⎛
⎜
⎝

x0
⊗

f

⎞
⎟
⎠
⊗ x1 ⊗⋯

⎞
⎟
⎠
∶= ⋯⊗ x−2 ⊗

⎛
⎜
⎝

x−1
⊗

f

⎞
⎟
⎠
⊗ x0 ⊗⋯,

γ̂0
⎛
⎜
⎝
⋯⊗ x−1 ⊗

⎛
⎜
⎝

x0
⊗

f

⎞
⎟
⎠
⊗ x1 ⊗⋯

⎞
⎟
⎠
∶= ⋯⊗ x−1 ⊗ γ0

⎛
⎜
⎝

x0
⊗

f

⎞
⎟
⎠
⊗ x1 ⊗⋯,

ι̂(f) ∶= ⋯⊗ 1L ⊗
⎛
⎜
⎝

1L

⊗

f

⎞
⎟
⎠
⊗ 1L ⊗⋯

for f ∈ A, . . . , x−1, x0, x1, . . . ∈ L. Considering the automorphism α̂0 as a canonical
bilateral extension of the endomorphism α̃0, we are interested in identifying bilateral
extensions of the other endomorphisms α̃1, α̃2, . . . to automorphisms of (M̂, ψ̂), now
satisfying the relations of the Thompson group F . But this seems to be impossible,
as (M̂, ψ̂) provides ‘too little space’ for accommodating such automorphisms. This
is illustrated in Figure 3 again on the level of the set {∎} ⊔ Z, when visualized as an
appropriate subset of {∎} ⊔ N2

0. Note that we have made a particular choice of how
to embed {∎} ⊔ Z into {∎} ⊔N2

0, and there are many other interesting possibilities for
choosing such an embedding.

⋮ ⋮ ⋮ ⋮

● ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

↑ i ○ ○ ○ ○ ⋯

● ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

● ○ ○ ○ ⋯

∎↺ ● ● ● ● ⋯

γ̂0 β̂0

j
Ð→

⋮ ⋮ ⋮ ⋮

● ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

↑ i ○ ○ ○ ○ ⋯

● ○ ○ ○ ⋯

○ ○ ○ ○ ⋯

● ○ ○ ○ ⋯

∎ ● ● ● ● ⋯

β̃1

j
Ð→

Figure 3. Visualization on the set {∎}⊔Z of the action of the two-sided

Bernoulli shift β̂0 and the local automorphism γ̂0 and of the ‘inability’ to
extend β̃1 from {∎}⊔N0 to an automorphism β̂1 on {∎}⊔Z such that the
relations of F are satisfied.
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This challenge to provide sufficient space for properly extending all partial shifts
{β̃k ∣ k ≥ 0} ⊂ (M̃, φ̃) is overcome by choosing

(M, ψ) = (A⊗L
⊗
N2
0φ⊗ tr

⊗
N2
0

λ )

with the canonical embedding ι∶ (A, φ) → (M, ψ) given by ι(a) ∶= a ⊗ (⊗(i,j)∈N2
0
1L).

This approach has already been detailed in the illustrative example of Subsection 4.1.
For the convenience of the reader, let us repeat how the partial shifts β̃k and the local
automorphism γ̃0 on M̃ are extended to automorphisms onM:

β0
⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
∶= a⊗ ( ⊗

(i,j)∈N2
0

yi,j) with yi,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x2i+1,j if j = 0,

x2i,j−1 if j = 1,

xi,j−1 if j ≥ 2,

and, for k ∈ N,

βk
⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
∶= a⊗ ( ⊗

(i,j)∈N2
0

yi,j) with yi,j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi,j if j ≤ k − 1,

x2i+1,j if j = k,

x2i,j−1 if j = k + 1,

xi,j−1 if j ≥ k + 1.

Furthermore, the local perturbation γ ∈ Aut(A,L) is amplified to

γ0
⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
= γ(a⊗ x00)⊗ ( ⊗

(i,j)∈N2
0∖{(0,0)}

xi,j).

We refer the reader to Figure 4 for a visualization of the action of the two-sided shifts
β0, β1 and the action of the local automorphism γ0.
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⋮ ⋮ ⋮ ⋮

● ● ● ● ⋯

↑ i ● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

∎↺ ● ● ● ● ⋯

γ0 β0

j
Ð→

⋮ ⋮ ⋮ ⋮ ⋮

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

↑ i ● ● ● ● ● ⋯

∎ ● ● ● ● ● ⋯

β1

j
Ð→

Figure 4. Visualization on the set {∎} ⊔ N2
0 of the action of the two-

sided Bernoulli shift β0, the local automorphism γ0, and the two-sided
Bernoulli shift β1.

We address {βk ∣ k ≥ 0} as a canonical extension of the family {β̃k ∣ k ≥ 0}. Of course,
there are many other interesting possibilities to arrive at suitable extensions. Now the
multiplicative extension of the automorphisms

ρB(gk) ∶= βk for k ≥ 0, (4.4.6)

ρM(gk) ∶= {
α0 ∶= γ0β0 for k = 0

αk ∶= βk for k > 0
, (4.4.7)

provides us with two representations ρB, ρM ∶F → Aut(M, ψ), as it is elementary to
verify the relations

βkβℓ = βℓ+1βk (0 ≤ k < ℓ <∞), (4.4.8)

αkαℓ = αℓ+1αk (0 ≤ k < ℓ <∞). (4.4.9)

Note that (4.4.8) fails to be valid for k = ℓ, in contrast to the relations for the partial

shifts β̃k in (4.4.4). We have already verified in Proposition 4.1.3 that (M, ψ,α0, ι(A))
is a bilateral noncommutative Markov process.

The above discussion has provided additional background information on the ideas
underlying Theorem 4.3.3, and on its proof strategy.
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