2013-05-312013-05-312011Hoffmann, N. (2011), 'Independent Parameters for special Instanton bundles on P^{2n+1}', Journal of Geometry and Physics, Vol.61(12), p2321-2330.http://hdl.handle.net/10395/1925Motivated by Yang-Mills theory in 4n dimensions, and generalizing the notion due to Atiyah, Drinfeld, Hitchin and Manin for n = 1, Okonek, Spindler and Trautmann introduced instanton bundles and special instanton bundles as certain algebraic vector bundles of rank 2n on the complex projective space P^{2n+1}. The moduli space of special instanton bundles is shown to be rational.eng© Elsevier, The original publication of Hoffmann, N. (2011), 'Independent Parameters for special Instanton bundles on P^{2n+1}', Journal of Geometry and Physics, Vol.61(12), p2321-2330 is available at http://dx.doi.org/10.1016/j.geomphys.2011.07.006Instanton bundleModuli spaceRationalityIndependent parameters for special instanton bundles on P^{2n+1} (Pre-published Version)Articlehttp://dx.doi.org/10.1016/j.geomphys.2011.07.006