2013-06-272013-06-272009Biswas, I. et al. (2009), 'Torelli Theorem for the Deligne-Hitchin Moduli Space', Communications in Mathematical Physics, Vol. 290(1), p 357-369.http://hdl.handle.net/10395/1974Fix integers g ≥ 3 and r ≥ 2, with r ≥ 3 if g = 3. Given a compact connected Riemann surface X of genus g, let M DH (X) denote the corresponding SL(r,C) Deligne–Hitchin moduli space. We prove that the complex analytic space M DH (X) determines (up to an isomorphism) the unordered pair {X,X − − } , where X − − is the Riemann surface defined by the opposite almost complex structure on Xeng© Springer Verlag, The original publication of Biswas, I. et al. (2009), 'Torelli Theorem for the Deligne-Hitchin Moduli Space', Communications in Mathematical Physics, Vol. 290(1), p 357-369 is available at http://dx.doi.org/10.1007/s00220-009-0831-3Moduli spaceTorelli TheoremTorelli theorem for the Deligne-Hitchin moduli space (Pre-published version)Articlehttp://dx.doi.org/10.1007/s00220-009-0831-3