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Abstract

The slope of the best fit line from minimizing the sum of the squared oblique errors is the root of a
polynomial of degree four. This geometric view of measurement errors is used to give insight into the
performance of various slope estimators for the measurement error model including an adjusted fourth
moment estimator introduced by Gillard and Iles (2005) to remove the jump discontinuity in the estimator
of Copas (1972). The polynomial of degree four is associated with a minimun deviation estimator. A
simulation study compares these estimators showing improvement in bias and mean squared error.
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1 Introduction

With ordinary least squares OLS(y|x) regression, we have data {(x1, Y1|X = x1), ..., (xn, Yn|X = xn)}
and we minimize the sum of the squared vertical errors to find the best-fit line y = h(x) = β0 + β1x.
With OLS(y|x) it is assumed that the independent or causal variable is measured without error. The
measurement error model has wide interest with many applications. See for example Carroll et al. (2006)
and Fuller (1987). The comparison of measurements by two analytical methods in clinical chemistry is
often based on regression analysis. There is no causal or independent variable in this type of analysis. The
most frequently used method to determine any systematic difference between two analytical methods is
OLS(y|x) which has several shortcomings when both measurement sets are subject to error. Linnet(1993)
states that “it is rare that one of the (measurement) methods is without error.” Linnet(1999) further states
that “ A systematic difference between two (measurement) methods is identified if the estimated intercept
differs significantly from zero (constant difference) or if the slope deviates significantly from 1 (proportional
difference).” Our paper concentrates on how to determine whether or not there is a significant difference
between two measurement instruments using a Monte Carlo simulation; that is, we concentrate our studies
about a true slope of 1. As in the regression procedure of Deming (1943), to account for both sets of errors,
we determine a fit so that both the squared vertical and the squared horizontal errors will be minimized. The
squared vertical errors are the squared distances from (x, y) to (x, h(x)) and the squared horizontal errors
are the squared distances from (x, y) to (h−1(y), y). As a compromise, we will consider oblique errors. All
of the estimated regression models we consider (including the geometric mean and perpendicular methods)
are contained in the parametrization (with 0 ≤ λ ≤ 1) of the line from (x, h(x)) to (h−1(y), y).
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We review the Oblique Error Method in Section 2. In Section 3, we review the geometric mean and
perpendicular error models. In Section 4, we show how the geometric mean slope is a natural estimator for
the slope in the measurement error (error-in-variables) model. Section 5 shows a relationship between the
maximum likelihood estimator in the measurement error model and the geometric mean estimator. We give
a case study to illustrate the effects that erroneous assumptions for the ratio of variance of errors can have
on the maximum likelihood estimators. Section 6 discusses a fourth moment estimator and shows a circular
relationship to the maximum likelihood estimator. Section 7 develops a minimum deviation estimator derived
by minimizing Equation (2) in Section 2 with respect to λ for fixed β1. Section 8 contains our Monte Carlo
simulations where we compare these estimators. Supporting Maple worksheets are available from the link
http://people.virginia.edu/˜der/ODriscoll Ramirez/.

2 Minimizing Squared Oblique Errors

¿From the data point (xi, yi) to the fitted line y = h(x) = β0+β1x the vertical length is ai = |yi − β0 − β1xi| ,
the horizontal length is bi = |xi − (yi − β0)/β1| = |(β1xi − yi + β0)/β1| = |ai/β1| and the perpendicular

length is hi = ai/
√
1 + β2

i . With standard notation, Sxx =
∑n

i=1(xi − x)2, Syy =
∑n

i=1(yi − y)2, Sxy =
∑n

i=1(xi − x)(yi − y) with the correlation ρ = Sxy/
√
SxxSyy.

For the oblique length from (xi, yi) to (h−1(yi)+λ(xi−h−1(yi)), yi+λ(h(xi)−yi)), the horizontal error is
(1−λ)bi = (1− λ)ai/ |β1| and the vertical error is λai. The sum of squared horizontal, respectively vertical,
errors are given by SSEh(β0, β1, λ) =

(∑n
i=1 a

2
i

)
/β2

1 and SSEv(β0, β1, λ) =
∑n

i=1 a
2
i . In a comprehensive

paper by Riggs et al. (1978), the authors place great emphasis on the importance of equations being
dimensionally correct, since it is from these equations that the slope estimators are derived. In particular
the authors state that: “It is a poor method indeed whose results depend upon the particular units chosen
for measuring the variables ... and that invariance under linear transformations is equivalent to requiring
the method to be dimensionally correct.” So that our equation is dimensionally correct we consider

SSEo(β0, β1, λ) = (1− λ)2
SSEh

σ̃2
δ

+ λ2SSEv

σ̃2
τ

(1)

where {σ̃2
δ , σ̃

2
τ} are Madansky’s moment estimators of the variance in the horizontal, respectively vertical,

directions. In Section 4, we show that this is equivalent to using

SSEo(β0, β1, λ) = (1− λ)2SyySSEh + λ2SxxSSEv. (2)

Similar to that shown in O’Driscoll, Ramirez and Schmitz (2008), the solution of ∂SSEo/∂β0 = 0 is given
by β0 = y − β1x and hence

SSEo(β0, β1, λ) =
(
(1− λ)2Syy/β

2
1 + λ2Sxx

)
(Syy − 2β1Sxy + β2

1Sxx).

The solutions of ∂SSEo/∂β1 = 0 are then the roots of the fourth degree polynomial equation in β1, namely

P4(β1) = λ2

√
Sxx

Syy

Sxx

Syy

β4
1 − λ2Sxx

Syy

ρβ3
1 + (1 − λ)2ρβ1 − (1− λ)2

√
Syy

Sxx

= 0. (3)

With λ = 1 we recover the minimum squared vertical errors with estimated slope βver
1 , and with λ = 0 we

recover the minimum squared horizontal errors with estimated slope βhor
1 .

For each fixed λ ∈ [0.1], there corresponds β1 ∈ [βver
1 , βhor

1 ] which satisfies Equation (3), and conversely,
for each fixed β1 ∈ [βver

1 , βhor
1 ], there corresponds λ ∈ [0.1] such that minimizing the sum of the squared

oblique errors has estimated slope β1. We measure the angle θλ of the oblique projection associated with λ
using the line segments (x, y) to (x, h(x)) and (x, h(x)) to (h−1(y), y). When the slope β1 is close to one, for
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λ near one we anticipate θλ to be near 45◦ and for λ is close to zero we anticipate θλ to be near 135◦. The
angles are computed from the Law of Cosines.

A similar argument to that of O’Driscoll et al. (2008) shows that P4(β1) has exactly two real roots,
one positive and one negative with the global minimum being the positive (respectively negative) root
corresponding to the sign of Sxy. Riggs et al. (1978) in Equation (119) also noted the role of the roots of a
similar quartic equation in determining the slope estimators.

3 Minimizing Squared Perpendicular and Squared Geometric Mean

Errors

The perpendicular error model dates back to Adcock (1878) who introduced it as a procedure for fitting a
straight line model to data with error measured in both the x and y directions. For squared perpendicular
errors Adcock minimized SSEper(β0, β1) =

∑n
i=1 a

2
i /(1 + β2

1) with solutions βper
0 = y − βper

1 x and

βper
1 =

(Syy − Sxx)±
√
(Syy − Sxx)2 + 4S2

xy

2Sxy

, (4)

provided Sxy 6= 0. However, in this case, the equation which minimizes SSEper(β0, β1) is dimensionally
incorrect unless x and y are measured in the same units.

For squared geometric mean errors, we minimize SSEgm(β0, β1) =
∑n

i=1

(√
|aibi|

)2

=
∑n

i=1 a
2
i /|β1|

with solutions βgm
0 = y − βgm

1 x and

βgm
1 = ±

√
Syy/Sxx. (5)

Proposition 1. The geometric mean estimator has oblique parameter λ = 1/2.

Proof: For βgm
1 =

√
Syy/Sxx,we solve the quadratic equation P4(β

gm
1 ) = 0 for λ. This equation reduces

to a linear equation whose root is λ = 1/2.�

4 Measurement Error Model and Second Moment Estimation

We now consider the measurement error (errors-in-variables) model as follows. In this paper it is assumed
that X and Y are random variables with respective finite variances σ2

X and σ2
Y , finite fourth moments and

have the linear functional relationship Y = β0 + β1X . The observed data {(xi, yi), 1 ≤ i ≤ n} are subject
to error by xi = Xi + δi and yi = Yi + τ i where it is also assumed that δ is N(0, σ2

δ) and τ is N(0, σ2
τ ). In

our simulation studies we will use an exponential distribution for X .
It is well known, in a measurement error model, that the expected value for βver

1 is attenuated to zero
by the attenuating factor σ2

X/(σ2
δ + σ2

X), called the reliability ratio by Fuller (1987). Similarly the expected

value for βhor
1 is amplified to infinity by the amplifying factor (σ2

Y + σ2
τ )/σ

2
Y . Thus for the measurement

error model, when both the vertical and horizontal models are reasonable, a compromise estimator such as
the geometric mean estimator βgm

1 is hoped to have improved efficiency. However, Lindley and El-Sayyad
(1968) proved that the expected value of βgm

1 is biased unless σ2
τ/σ

2
Y = σ2

δ/σ
2
X .

Madansky’s moment estimators for {σ2
δ, σ

2
τ} are

σ̃2
δ =

Sxx

n
− Sxy

nβ1

, (6)

σ̃2
τ =

Syy

n
− β1Sxy

n
.
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If σδ is known or can be approximated, Madansky used the first of the equations in Equation (6) to derive an
estimator for β1 but Riggs et al. (1978) in Figure 5 produced an example for which this estimator performs
poorly. In general σδ is not known and concentration focuses on estimating the true error ratio σ2

τ/σ
2
δ. Our

Monte Carlo simulation illustrates how poor estimates for the error ratio may lead to large biases using the
MLE estimator. It would be interesting to determine if there is a slope estimator β1 that is a fixed point for
β1 = σ̃τ (β1)/σ̃δ(β1). This can be achieved with the geometric mean estimator βgm

1 .

Proposition 2. βgm
1 is a fixed point of the ratio function β1 =

σ̃τ (β1)

σ̃δ(β1)
.

Proof: Rewrite nσ̃2
δ = Sxx − Sxyβ

gm
1 = Sxx − Sxy

√
Sxx/Syy and nσ̃2

τ = Syy − Sxyβ
gm
1 = Syy −

Sxy

√
Syy/Sxx, from which σ̃τ/σ̃δ =

√
Syy/Sxx.�

We return to the assertion made in Section 1. A natural standardized weighed average for the oblique
model is shown in Equation (1) and using the fixed point solution of Proposition 2 in this equation yields
the equivalent model given in Equation (2).

5 The Maximum Likelihood Estimator

If the ratio of the error variances κ = σ2
τ/σ

2
δ is assumed finite, then Madansky (1959), among others, showed

that the maximum likelihood estimator for the slope is

βmle
1 =

(Syy − κSxx) +
√
(Syy − κSxx)2 + 4κρ2SxxSyy

2ρ
√
SxxSyy

(7)

It also follows that if κ = 1 in Equation (7) then the MLE (often called the Deming Regression estimator)
is equivalent to the perpendicular estimator, βper

1 . Conversely, if the MLE is βper
1 then κ = 1. In the particular

case where Sxx = Syy then βper
1 has a λ value of 0.5. We note that Syy/Sxx is a good estimator of σ2

y/ σ2
x,

but in general, it is not a good estimator of the error ratio κ = σ2
τ/ σ2

δ. In Section 6, we discuss a moment
estimator κ̃ for κ.

The MLE is a function of {ρ, κ, Sxx/Syy}. Table 1 gives the corresponding βmle
1 value for typical values.

For fixed {κ, ρ}, the values for βmle
1 in each column of Table 1 decrease. As expected, with κ = 1 and

Sxx = Syy, the maximum likelihood estimator agrees with the geometric mean estimator, both being equal
to 1.00.

Table 1

Values for βmle
1 for typical {ρ, κ, Sxx/Syy}

κ = 0.500 0.500 0.500 0.500 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000
ρ = 0.200 0.400 0.600 0.800 0.200 0.400 0.600 0.800 0.200 0.400 0.600 0.800
Sxx/Syy = 1/2 5.396 2.828 2.016 1.632 3.799 2.219 1.750 1.535 1.414 1.414 1.414 1.414
Sxx/Syy = 1 2.686 1.569 1.237 1.086 1.000 1.000 1.000 1.000 0.372 0.638 0.808 0.921
Sxx/Syy = 2 0.707 0.707 0.707 0.707 0.263 0.451 0.571 0.651 0.185 0.354 0.496 0.613

In Table 2 we record the corresponding obliqueness parameter λ for the maximum likelihood model for
these typical values. Small values near 0 support OLS(x|y), denoted by βhor

1 , and large values near 1 support
OLS(y|x), denoted by βver

1 . For fixed {κ, ρ}, the values for the obliqueness parameter λ in each column of
Table 2 increase indicating the model moves from βhor

1 towards βver
1 . With κ = Syy/Sxx, β

mle
1 = βgm

1 as
shown by the cells of Table 2 with λ = 0.500.
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Table 2

Values for λ for typical {ρ, κ, Sxx/Syy}
κ = 0.500 0.500 0.500 0.500 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000
ρ = 0.200 0.400 0.600 0.800 0.200 0.400 0.600 0.800 0.200 0.400 0.600 0.800

Sxx/Syy = 1/2 0.033 0.111 0.197 0.273 0.089 0.223 0.316 0.375 0.500 0.500 0.500 0.500
Sxx/Syy = 1 0.089 0.223 0.316 0.375 0.500 0.500 0.500 0.500 0.911 0.777 0.684 0.625
Sxx/Syy = 2 0.500 0.500 0.500 0.500 0.911 0.776 0.684 0.625 0.967 0.889 0.803 0.727

The Madansky’s moment estimators {σ̃2
δ , σ̃

2
τ} depend on the choice of β1. In Table 3, we record the effect

of varying slopes on the moments and their ratio when computable.

Table 3

Error ratios for Madansky’s moment estimators for varying β1

σ̃2
δ σ̃2

τ
σ̃2

τ

σ̃2

δ

βver
1 0 1−ρ2

n
Syy ∞

βhor
1

1−ρ2

n
Sxx 0 0

βgm
1

1−ρ
n

Sxx
1−ρ
n

Syy
Syy

Sxx

βper
1

1
2

Sxx+Syy−

√
(Sxx−Syy)2+4ρ2SxxSyy

n
1
2

Sxx+Syy−

√
(Sxx−Syy)2+4ρ2SxxSyy

n
1

βmle
1

1
2

Sxx+
Syy
κ

−

√
(Sxx−

Syy
κ

)2+4ρ2Sxx
Syy
κ

n
1
2

κSxx+Syy−

√
(κSxx−Syy)2+4ρ2κSxxSyy

n
κ

In the next section, we introduce a second moment estimator for κ and a fourth moment estimator for
β1.

6 Fourth Moment Estimation

When κ is unknown, Solari (1969) showed that the maximum likelihood estimator for the slope β1 does
not exist, as the maximum likelihood surface has a saddle point at the critical value. Earlier Lindley and
El-Sayyad (1968) suggested, in this case, that the maximum likelihood method fails as the estimator would
be the geometric mean estimator which converges to the wrong value. Sprent (1970) pointed out the result
of Solari does not imply that the maximum likelihood principle has failed, but rather that the likelihood
surface has no maximum value at the critical value.

Copas (1972) offered some advice for using the maximum likelihood method. He assumed the data has
rounding-off errors in the observations which allows for an approximated likelihood function to be used, and
that this approximated likelihood function is bounded. His estimator for the slope has the rule

βcop
1 =

{
βver
1 if

∑
y2i <

∑
x2
i

βhor
1 if

∑
y2i >

∑
x2
i

,

so the ordinary least squares estimators are used depending on the whether |βgm
1 | < 1 or |βgm

1 | > 1.
The Copas estimator is not continuous in the data as a small change in data can switch the direction

of the inequality
∑

y2i <
∑

x2
i which will cause a jump discontinuity in the estimator βcop

1 . To achieve
continuity in the data, we adjust the range of the fourth moment estimator βmom

1 described in Gillard and
Iles (2005) to account for admissible values for {σ2

δ , σ
2
τ}. See also Gillard and Iles (2010).
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The basic second moment estimators for σ̃2
δ and σ̃2

τ are shown in Equation (6). Since variances must be

positive, we have the admissible range for the moment estimator for β̃1 as

βver
1 =

Sxy

Sxx

< β̃1 <
Syy

Sxy

= βhor
1 . (8)

Set Sxxxy =
∑

(xi − x)3(yi − y) and similarly for Sxyyy. Following Gillard and Iles (2005), from Equations
(22) and (24)), the fourth moment equations of interest are

Sxxxy

n
= β̃µ̃4 + 3β̃σ̃2σ̃2

δ (9)

Sxyyy

n
= β̃

3
µ̃4 + 3β̃σ̃2σ̃2

ε

with µ̃4 denoting the fourth central moment for the underlying distribution of X. The four equations from
(6) and (9) allow for a moment solution for β1 as

β̃1 =

√
Sxyyy − 3SxySyy

Sxxxy − 3SxySxx

. (10)

In our simulation study, β̃1 was well-defined around 99% of the time. If the radicand is negative, we
recommend using the geometric mean estimator.

To satisfy Equation (8) we define βmom
1 as

βmom
1 =





βver
1 if β̃1 ≤ βver

1

β̃1 if βver
1 ≤ β̃1 ≤ βhor

1

βhor
1 if β̃1 ≥ βhor

1

. (11)

This is a Copas-type estimator with the moment estimator β̃1 used to ”smooth” out the jump discontinuity
inherent in the Copas estimator. We next study the circular relationship between this moment estimator
and the maximum likelihood estimator with fixed κ.

We will define the moment estimator κ(β1) as a function of β1, then use this value to compute βmle
1 (κ)

as a function of κ. Finally, we note that βmle
1 (κ(β̃1)) = β̃1, showing the circular relationship between the

estimators {β̃1, β
mle
1 }. Thus our moment estimator also has the functional form of the maximum likelihood

estimator with fixed κ.
Set κ̃(β̃1) = σ̃2

τ/σ̃
2
δ so

κ̃(β̃1) =
Syy − β̃1ρ

√
SxxSyy

Sxx − ρ/β̃1

√
SxxSyy

. (12)

We use κ̃(β̃1) in Equation (7) to determine βmle
1 (κ̃(β̃1)). As β̃1 → βhor

1 the numerator in Equation (12) tends

to zero so κ̃(β̃1) → 0 and βmle
1 (κ̃(β̃1)) → βhor

1 ; similarly as β̃1 → βver
1 the denominator in Equation (12)

tends to zero so κ̃(β̃1) → ∞ and βmle
1 (κ̃(β̃1)) → βver

1 . A stronger result is given in the following Proposition.

Proposition 3. For each β1, β
mle
1 (κ̃(β1)) = β1 and in particular βmle

1 (κ̃(β̃1)) = β̃1.

Proof: In Equation (7) solve βmle
1 (κ) = β1 for κ = κ0, and then check that κ0 is the same as in Equation

(12).�
An example helps to demonstrate the smoothing achieved with the moment estimator βmom

1 . Assume
{ρ = 0.5, Sxx = 1, Sxxxy = 10, Sxyyy = 5}. Equation (8) requires that 0.13029 ≤ Syy ≤ 1.31862. As

Syy varies over the admissible values for Syy, κ̃(β̃1) varies over [0,∞] and β̃1 varies over [βver
1 , βhor

1 ] and

βmle
1 (κ̃(β̃1)) = β̃1, a surprising result.
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Table 4

Slope Estimates with {ρ = 0.5, Sxx = 1, Sxxxy = 10, Sxyyy = 5}

Syy βver
1 β̃1 βhor

1 κ̃(β̃1) βmle
1

0.1303 0.1805 0.7219 0.7219 0.0000 0.7219
0.2000 0.2236 0.7222 0.8944 0.0558 0.7222
0.4000 0.3164 0.7145 1.2649 0.3123 0.7145
0.6000 0.3873 0.6977 1.5492 0.7412 0.6977
0.8000 0.4472 0.6734 1.7889 1.4850 0.6734
1.0000 0.5000 0.6417 2.0000 3.0760 0.6417
1.2000 0.5477 0.6020 2.1909 9.6582 0.6020
1.3186 0.5742 0.5742 2.2966 ∞ 0.5741

7 Minimum Deviation Estimation

¿From Section 1 with fixed β1 the solution of ∂SSEo/∂λ = 0 is given by λ = Syy/(Syy+β2
1Sxx). Substituting

βmom
1 for β1 in this result for λ produces a Minimum Deviation type estimator which we denote by βmd

1 ,
with βver

1 ≤ βmd
1 ≤ βhor

1 . Our simulation studies will support the efficiency of this Minimum Deviation
estimator.

Riggs et al. (1978) observes for Syy/Sxx = 1 that the geometric mean estimator is unbiased when κ = 1,
negatively biased when κ < 1, and positively biased when κ > 1. The authors also state that “no one method
of estimating β1 is the best method under all circumstances.” To determine the efficiency of these estimators
we conduct a Monte Carlo simulation in the next section.

8 Monte Carlo Simulation

Our Monte Carlo simulation uses X with an exponential distribution with mean µX = 10 (and σX = 10)
and Y = X so β1 = 1 and β0 = 0. Both X and Y are subject to errors σ2

δ, respectively σ2
τ where (σ2

δ, σ
2
τ )

∈ {1, 4, 9}×{1, 4, 9}. The sample size n is chosen as 100.
The first simulation, with the number of replications R = 100, summarized in Table 5, reports on the

bias in the MLE estimator in using a misspecified value of κ. For (σ2
δ , σ

2
τ ) ∈ {1, 4, 9}×{1, 4, 9}, κ ranges

with ratios from 1 : 1 to 9 : 1 The true error ratios of κ are recorded in the first row and the assumed error
ratios κ# which are used to compute βmle

1 are recorded in the first column, both in ascending order.

Table 5

Percentage Bias of MLE estimator for the assumed ratios κ# for varying values of κ = σ2
τ/σ

2
δ

{β1 = 1, β0 = 0, n = 100, R = 100}
{κ#, κ} 1 : 9 1 : 4 4 : 9 1 : 1 4 : 4 9 : 9 9 : 4 4 : 1 9 : 1
1 : 9 0.166 0.502 2.164 0.870 3.663 7.995 8.723 3.592 9.282
1 : 4 −0.914 −0.012 0.811 0.666 2.807 6.087 7.351 3.067 8.265
4 : 9 −2.066 −0.564 −0.643 0.445 1.878 3.999 5.838 2.496 7.137
1 : 1 −4.067 −1.541 −3.184 0.051 0.218 0.266 3.083 1.467 5.058
4 : 4 −4.067 −1.541 −3.184 0.051 0.218 0.266 3.083 1.467 5.058
9 : 9 −4.067 −1.541 −3.184 0.051 0.218 0.266 3.083 1.467 5.058
9 : 4 −5.957 −2.495 −5.590 −0.342 −1.417 −3.330 0.338 0.437 2.936
4 : 1 −6.956 −3.016 −6.856 −0.561 −2.310 −5.230 −1.161 −0.136 1.748
9 : 1 −7.840 −3.489 −7.973 −0.763 −3.119 −6.899 −2.513 −0.663 0.657
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As expected, the values for κ̃ = κ show the smallest bias, and in each column for a given κ the bias
shows that the estimated slope moves from over estimating the true value to under estimating the true value
of β1 = 1. This was anticipated since for κ̃ near zero the maximum likelihood estimator favors βhor

1 which
over estimates β1; and correspondingly, for κ̃ near one the maximum likelihood estimator favors βver

1 which
under estimates β.

We conducted a second large scale Monte Carlo simulation study with R = 1000 to demonstrate the im-
provement in the adjusted fourth moment estimator βmom

1 over the Copas estimator which has a jump
discontinuity. Simulations for other slope estimators have been reported by Hussin (2004). We used
an exponential distribution for X with µX = 10, and set β1 = 1 and β1 = 0. The values for the er-
ror standard deviations were (σδ, στ ) ∈ {1, 2, 3, 4}×{1, 2, 3, 4}, the sample size was n = 100 and the
number of replications R = 1000. We report in Tables 6, 7, and 8 the MSE and the Bias for the es-
timators {βver

1 , βhor
1 , βper

1 , βgm
1 , βmom

1 , βmd
1 } for (σδ, στ ) ∈ {(1, 2), (1, 3), (1, 4)}. Similar results hold for

(σδ, στ ) ∈ {(2, 1), (3, 1), (4, 1)} Note that in each case the adjusted fourth moment estimator βmom
1 is

more efficient than the Copas estimator. To see this we compare the pairs of values (MSE, Bias) in the
three tables. For βmom

1 these are {(1.001,−0.830), (2.786,−1.807), (5.717,−2.813)} and for Copas these
are {(2.378,−2.410), (8.769,−7.347), (23.018,−13.848)}. In practice, the researcher may not know which of
{σ2

τ , σ
2
δ} is larger. If he does, then he may choose either of {βver

1 , βhor
1 } with βhor

1 favored when σ2
δ is much big-

ger than σ2
τ . A fairer comparison is to use OLS(y|x) and OLS(x|y) each 50% of the time. Thus in the Tables

we report the average for the MSE and the average of the absolute deviation of the biases for the two OLS es-
timators. These average (MSE, Bias) values from the tables are {(1.336, 2.518), (4.847, 4.831), (12.46, 7.858)}
showing the improved efficiency of βmom

1 . As anticipated the minimum deviation estimator βml
1 achieves fur-

ther improvement in reduction of (MSE, Bias) with values {(0.646,−1.336), (2.309,−3.584), (5.578,−6.288)}.

Table 6

X is Exp(10), β1 = 1, β0 = 0, R = 1000, n = 100
(στ = 1, σδ = 2)

OLS∗ reports average MSE and average absolute Bias for {βver
1 , βhor

1 }
MSE ∗ 10−3 %Bias λ θλ

βver
1 2.001 −3.843 1.000 46.12

OLS∗ 1.336 2.518 NA NA

βhor
1 0.670 1.193 0.000 136.12

βper
1 0.688 −1.396 0.507 89.99

βgm
1 0.653 −1.360 0.500 90.78

βmom
1 1.001 −0.830 0.339 108.27

βcop
1 2.378 −2.410 0.651 74.47

βmd
1 0.646 −1.336 0.497 91.06

Table 7

X is Exp(10), β1 = 1, β0 = 0, R = 1000, n = 100
(στ = 1, σδ = 3)

OLS∗ reports average MSE and average absolute Bias for {βver
1 , βhor

1 }
MSE ∗ 10−3 %Bias λ θλ

βver
1 8.370 −8.459 1.000 47.53

OLS∗ 4.847 4.831 NA NA

βhor
1 1.324 1.203 0.000 137.53

βper
1 2.688 −3.954 0.520 89.60

βgm
1 2.423 −3.760 0.500 92.19

βmom
1 2.786 −1.807 0.318 110.94

βcop
1 8.769 −7.347 0.848 58.14

βmd
1 2.309 −3.584 0.490 93.196
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Table 8

X is Exp(10), β1 = 1, β0 = 0, R = 1000, n = 100
(στ = 1, σδ = 4)

OLS∗ reports average MSE and average absolute Bias for {βver
1 , βhor

1 }
MSE ∗ 10−3 %Bias λ θλ

βver
1 22.791 −14.376 1.000 49.43

OLS∗ 12.46 7.858 NA NA

βhor
1 2.134 1.339 0.000 139.43

βper
1 7.406 −7.480 0.539 89.95

βgm
1 6.242 −6.880 0.500 94.08

βmom
1 5.717 −2.813 0.286 114.51

βcop
1 23.018 −13.848 0.950 52.71

βmd
1 5.578 −6.288 0.480 96.04

9 Summary

We have modified the fourth moment estimator of the slope from Gillard and Iles (2005) to show how to
remove the jump discontinuity in the estimator given by Copas (1972). We show how the moment estimators
{βmom

1 , σ̃2
δ, σ̃

2
τ} can be used to determine an MLE estimator which surprisingly is the original moment

estimator of the slope. Our simulations support our claim that both {βmom
1 , βmd

1 } are more efficient than
the average of the OLS estimators.
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