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EXISTENCE OF TWISTOR SPACES
OF ALGEBRAIC DIMENSION TWO

OVER THE CONNECTED SUM
OF FOUR COMPLEX PROJECTIVE PLANES

F. CAMPANA AND B. KREUSSLER

(Communicated by Ron Donagi)

Abstract. We prove the existence of twistor spaces of algebraic dimension
two over the connected sum of four complex projective planes 4CP2. These are
the first examples of twistor spaces of algebraic dimension two over a simply
connected Riemannian four–manifold with positive scalar curvature. For this
purpose we develop a method to distinguish between twistor spaces of algebraic
dimension one and two by looking at the order of a certain point in the Picard
group of an elliptic curve.

1. Introduction

Twistor spaces were introduced by R. Penrose [Pe]. The first rigorous mathemat-
ical foundation of these ideas was given by M. Atiyah, N. Hitchin and I. Singer in
their now classical paper [AHS]. The twistor construction gives a close relationship
between three–dimensional complex geometry and real four–dimensional conformal
self–dual geometry.

From our point of view, a twistor space Z is a complex three–manifold with the
following additional structure:

• A proper differentiable submersion π : Z → M onto a real differentiable four–
manifold M . The fibres of π are holomorphic curves in Z being isomorphic
to CP1 and having normal bundle in Z isomorphic to O(1)⊕O(1).

• An anti–holomorphic fixed–point free involution σ : Z → Z with πσ = π.

Note that π is not holomorphic (M carries, in general, no almost complex structure).
The fibres of π are called “real twistor lines” and the involution σ is called the “real
structure”. Anything which is invariant under σ will obtain the attribute “real”.
For example, a complex subvariety D ⊂ Z is “real” if σ(D) = D. We shall only
consider twistor spaces which are both compact and connected.

The first classification results are due to N. Hitchin [H2] and T. Friedrich,
H. Kurke [FK]. They showed that there exist exactly two compact twistor spaces
which are Kählerian. Such a twistor space Z is automatically Fano (that is: −KZ

is ample, so that Z is, in particular, projective). The corresponding Riemannian
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four–manifolds are the 4–sphere S4 and the complex projective plane CP2 (with
Fubini–Study metric).

New examples of twistor spaces of algebraic dimension three (that is, Moishezon)
were first produced by Y.S. Poon [Po1]. There the manifold M was 2CP2. The cor-
responding Z are not projective or even Kähler, although they are bimeromorphic
to P3.

A partial generalization of the results of [H2] and [FK] was obtained in [C2],
where it is shown that if Z is a twistor space of the class C (that is, bimeromorphic
to some compact Kähler manifold), then Z is Moishezon and simply connected.
This implies, using deep results of M. Freedman [F] and S. Donaldson [Don], that
M is homeomorphic to nCP2 for some n ≥ 0.

In complete anology with the Kähler case, it was also established in [Po2] that if Z
is a simply connected twistor space, its algebraic dimension is equal to κ(Z, K−1

Z ),
the Iitaka dimension of its anti–canonical bundle. Hence, if Z is Moishezon, it
is weakly Fano (that means κ(Z, K−1

Z ) = 3). From results of M. Ville [V] and
P. Gauduchon [G] it follows that “simply connected” can be relaxed to b1(Z) = 0
in the result of [Po2].

The existence of twistor spaces Z over M = nCP2 was shown in [DonF] for n = 4
with a(Z) = 1 and for n ≥ 5 with a(Z) = 0. The first explicit examples of twistor
spaces for n ≥ 3 were constructed by C. LeBrun [LeB1]. We follow the literature
and call these spaces LeBrun twistor spaces. They have algebraic dimension three
and their complex geometry was studied by H. Kurke [Ku]. Recently, Pedersen and
Poon have shown [PP3] that (for fixed n) LeBrun’s and Donaldson–Freedman’s
examples belong to the same deformation family.

The first example of a twistor space of algebraic dimension two was found by
M. Pontecorvo [Pon1]. These twistor spaces are of positive type but not simply
connected. The corresponding self–dual Riemannian four–manifold is a primary
Hopf surface (equipped with negative orientation) which has odd first Betti num-
ber. We present here the first example of a simply connected twistor space having
algebraic dimension two.

It seems to be natural to consider the following

Problems. (i) What are the possible algebraic dimensions of twistor spaces Z
over M = nCP2?

(ii) Compute the algebraic dimension of such twistor spaces Z in terms of divisors
on Z.

There are several results concerning these problems. To explain them, we need
the notion of the “type” of a twistor space. To define this notion, we look at the
self–dual conformal structure induced on M by the twistor space. By a result of
R. Schoen [Sch], every conformal class of a compact Riemannian four–manifold
contains a metric of constant scalar curvature. Its sign will be called the type of
the twistor space. This is an invariant of the conformal class, hence of the twistor
space.

In this paper we focus on the case of positive type. This is because in this case
the vanishing theorem of Hitchin (2.1) can be applied. Furthermore, note that a
twistor space of algebraic dimension two is of positive type [Pon2].

On the other hand, Poon’s computation of the algebraic dimension [Po3] together
with the Riemann–Roch formula and Hitchin’s vanishing theorem imply:
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If Z is a twistor space over nCP2 with n ≤ 3, then Z has algebraic dimension
three if and only if it has positive type.

The structure of these manifolds is, nowadays, fairly well–known (see [H2], [FK],
[Po1], [KK] and [Po2]).

Since c1(Z)3 has the same sign as 4− n, the case n = 4 is somehow exceptional.
According to results of F. Campana [C1] and C. LeBrun, Y.S.Poon [LeBP], in

the case n = 4 there exist twistor spaces Z with a(Z) = 1. In his paper [Po3] Poon
expressed the algebraic dimension of a twistor space in terms of divisors whose
restriction to twistor lines have degree one. In case n = 4, the algebraic dimension
is at least one. Poon’s methods allow one to decide whether or not the algebraic
dimension is three. See also [PP2].

Investigating the anti–canonical system on certain fundamental divisors (that is,
elements in | − 1

2K|), we shall be able to distinguish between algebraic dimension
one and two. Our main technical result (Theorem 3.4) will be

Theorem. Let Z be a twistor space of positive type over 4CP2 and S a real funda-
mental divisor. Assume that | −KS | contains a smooth curve C. Let N = NC|S be
the normal bundle of C ⊂ S. Then N is of degree zero in Pic(C). We have:

a(Z) ≤ 2 and

a(Z) = 2 ⇐⇒ N is of finite order in the group Pic0(C).

Using this result we obtain the main result of this paper (Theorem 4.1):

Theorem. There exist twistor spaces over 4CP2 having algebraic dimension two.

2. Generalities

This section collects known facts about twistor spaces. For proofs and more
information the reader is referred to [ES], [H2], [Kr], [Po1].

Let Z be a simply connected twistor space with h2(Z,OZ) = 0. Then Hi(Z, Z) is
a free Z–module, which vanishes for i odd. We define the integer n by the equation
n + 1 = rankH2(Z, Z). The Chern numbers of Z are:

c3
1 = 16(4− n),

c1c2 = 24,

c3 = 2(n + 2).

Cohomology of sheaves. For any twistor space we have h3(Z,OZ) = 0. By assump-
tion, hi(Z,OZ) = 0 for i = 1, 2. In particular, we obtain an isomorphism of abelian
groups, given by the first Chern class:

Pic(Z) ∼−→ H2(Z, Z).

There exists a unique line bundle whose first Chern class is 1
2c1. We shall denote

it by K− 1
2 . Poon calls it the fundamental line bundle. The divisors in the linear

system | − 1
2K| will be called fundamental divisors.

The degree of a line bundle L ∈ Pic(Z) will be by definition the degree of its
restriction to a real twistor line. For example, deg(K− 1

2 ) = 2. We obtain in this
way a surjective degree map

deg : Pic(Z) � Z.
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From the above equations on Chern numbers we obtain, by applying the Riemann–
Roch theorem,

χ(Z, K−m
2 ) = m + 1 + 1

3 (4− n)m(m + 1)(m + 2).(1)

Vanishing theorems. The most important tool in classifying twistor spaces is
Hitchin’s vanishing theorem:

Theorem 2.1 (Hitchin [H1]). If Z is of positive type, then we have for any L ∈
Pic(Z)

deg(L) ≤ −2 ⇒ H1(Z,L) = 0.

On the other hand, since the twistor lines cover Z, we obtain:

deg(L) ≤ −1 ⇒ H0(Z,L) = 0.

By Serre–duality this gives the following important vanishing results:

deg(L) ≥ −2 ⇒ H2(Z,L) = 0,(2)
deg(L) ≥ −3 ⇒ H3(Z,L) = 0.(3)

3. Computation of the algebraic dimension

Throughout this section we make the following assumptions: Z is a twistor
space over 4CP2, which is simply connected and of positive type. In particular:
h1(Z,OZ) = h2(Z,OZ) = 0.

From Section 2 we know

h0(K−m
2 ) = m + 1 + h1(K−m

2 ) ∀m ≥ −1;(4)

in particular, dim | − 1
2K| ≥ 1. The property (− 1

2K)3 = 0 will be crucial in what
follows.

Lemma 3.1. The linear system | − 1
2K| contains a smooth real element.

Proof. This is proved in [PP1, Lemma 2.1] for the case that | − 1
2K| contains an

irreducible element. If this is not the case, we would have infinitely many reducible
elements in this linear system, hence infinitely many divisors of degree 1 in Z. But,
by results of Kurke [Ku] and Poon [Po3], this occurs only in the case of LeBrun
twistor spaces. For such twistor spaces the lemma is also true, which completes the
proof.

Remark 3.2. The proof shows even more: If Z is an arbitrary compact twistor
space with dim | − 1

2K| ≥ 1, then there exists a smooth real divisor in | − 1
2K|.

Now let S ∈ | − 1
2K| be a real smooth divisor. Using the exact sequence

0 → K
1
2 → OZ → OS → 0

and Hitchin’s vanishing theorem we obtain hi(OS) = 0 for i > 0. The adjunction
formula gives K−1

S = K− 1
2 ⊗ OS . From the exact sequence 0 → OZ → K− 1

2 →
K−1

S → 0 we obtain

Hi(Z, K− 1
2 ) ∼= Hi(S, K−1

S ) ∀i ≥ 1

and a surjective restriction map H0(Z, K− 1
2 ) � H0(S, K−1

S ) with one–dimensional
kernel. In particular, h0(S, K2

S) = h2(S, K−1
S ) = h2(Z, K− 1

2 ) = 0 and h1(S,OS) =
0. Hence, by Castelnuovo’s criterion, S is a rational surface.

This leads to the following facts:
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(i) | − 1
2K| and | −KS | have the same base locus.

(ii) h0(K−1
S ) = h0(K− 1

2 )− 1 = 1 + h1(K−1
S ) ≥ 1.

(iii) (−KS)2 = (− 1
2K)3 = 0.

Lemma 3.3. If dim | − 1
2K| ≥ 2, then

| − 1
2K| has no basepoints ⇐⇒ | −KS | contains a smooth curve.

Proof. By assumption we have dim | −KS| ≥ 1.
(=⇒) is a consequence of Sard’s or Bertini’s theorem.
(⇐=) Assume | − 1

2K| has basepoints. Since (−KS)2 = 0 , the system | −KS|
has no isolated basepoints. But since dim | − KS| ≥ 1, there also exist moving
components; hence |−KS | would contain reducible elements only. But all elements
of |−KS| are connected since h1(KS) = h1(OS) = 0. This contradicts the existence
of a smooth curve in | −KS|.

Therefore, we have to distinguish three cases:
(i) | −KS| contains a smooth curve.
(ii) dim | − 1

2K| ≥ 2 and it has basepoints.
(iii) dim | − 1

2K| = 1 and | −KS | = {C} with a non–smooth curve C.
In the rest of this paper we shall discuss the first case.
Let Z and S be as above and C ∈ | −KS | a smooth curve. By adjunction we

obtain KC = OC ; hence C is an elliptic curve. Let N = NC|S = K−1
S ⊗OC denote

the normal bundle of C in S. From (−KS)2 = 0 we obtain: deg N = 0.
Having this in mind, we formulate the following

Theorem 3.4. Let Z be a twistor space of positive type over 4CP2 and S a real
and smooth fundamental divisor. Assume that | −KS| contains a smooth curve C.
Denote the order of N = K−1

S ⊗ OC in the group Pic(C) by τ . This number is
related to the algebraic dimension a(Z) in the following way:

τ = ∞ ⇐⇒ a(Z) = 1,(5)
τ < ∞ ⇐⇒ a(Z) = 2.(6)

If 1 ≤ m < τ , we have h0(K−m
2 ) = m + 1 and h1(K−m

2 ) = 0.
If 1 ≤ m < τ and i ≥ 0, we have hi(K−m

S ) = hi(OS).
If τ < ∞, then we have, furthermore:
| − τ

2K| has no basepoints, h0(K− τ
2 ) = τ + 2 and h1(K− τ

2 ) = h1(K−τ
S ) = 1.

Proof. We shall basically rely on the result of Poon [Po2] that a(Z) = κ(Z, K−1)
(the Iitaka dimension of the anti–canonical line bundle). Therefore, from h0(K− 1

2 )
≥ 2 we immediately see: a(Z) ≥ 1.

Consider the following two exact sequences: (m ∈ Z)

0 → K
−(m−1)
S → K−m

S → N⊗m → 0,(7)

0 → K−m−1
2 → K−m

2 → K−m
S → 0.(8)

Observe that h0(N⊗m) = h1(N⊗m) = 1 if N⊗m ∼= OC . In all other cases these
numbers vanish. This is because C is elliptic and deg N = 0.

If 1 ≤ m < τ , then h0(N⊗m) = h1(N⊗m) = 0; hence (7) gives: hi(K−(m−1)
S ) =

hi(K−m
S ) and so by induction

hi(K−m
S ) = hi(OS) ∀1 ≤ m < τ.
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Using h1(OZ) = 0, the sequence (8) yields, by induction on m ≥ 1, h0(K−m
2 ) =

1 + h0(K−m−1
2 ) and h1(K−m

2 ) = 0 and so

h0(K−m
2 ) = m + 1 ∀1 ≤ m < τ.

In particular, if τ = ∞, we obtain a(Z) = κ(Z, K−1) = 1.
Assume for the rest of the proof τ < ∞.
With the above computations the cohomology sequences of (7) and (8) with

m = τ yield h0(K−τ
S ) = 2, h1(K−τ

S ) = 1 and

h0(K− τ
2 ) = h0(K− τ−1

2 ) + h0(K−τ
S ) = τ + 2,

h1(K− τ
2 ) = h1(K−τ

S ) = 1.

Next we prove that | − τ
2K| has no basepoints. Since τS ∈ | − τ

2K|, we see from
the exact sequence

0 → H0(K− τ−1
2 ) → H0(K− τ

2 ) → H0(K−τ
S ) → 0

that | − τ
2K| and | − τKS | have the same base locus.

But the exact sequence

0 → H0(K−(τ−1)
S ) → H0(K−τ

S ) → H0(OC) → 0

tells us that there is a section in H0(K−τ
S ) which does not vanish at any point of

C. Hence, the base locus of | − τKS | is empty.
It remains to show a(Z) ≥ 2.
Let Φτ : Z → Pτ+1 be the morphism defined by the linear system | − τ

2K|. Let
Xτ ⊂ Pτ+1 be the image of Φτ . Assume a(Z) = 1; then by a(Z) = κ(Z, K− 1

2 )
we have dim Xτ = 1. By definition of Φτ the curve Xτ is not contained in a
proper linear subspace of Pτ+1. Using a well–known result ([H, §18]), this implies
deg Xτ ≥ τ + 1. Since Xτ is irreducible and reduced, a generic hyperplane section
meets this curve at exactly degXτ distinct points. Hence, the generic element in
|− τ

2K| is the sum of deg Xτ disjoint, but algebraically (even linearly, since π1(Z) =
0 forces Xτ to be a rational curve) equivalent divisors in Z. Thus, alternatively,
because Pic(Z) ∼= H2(Z, Z) is a free abelian group, we obtain − τ

2K = δK0. Here
K0 is a fibre of Φτ and δ = deg Xτ ≥ τ + 1. Computation of the degree gives
2τ = δ deg K0. Therefore, δ = 2τ and deg K0 = 1. Then there were infinitely many
divisors of degree 1 in Z, leading again to the case of LeBrun twistor spaces. But
for such twistor spaces we have h0(K− 1

2 ) = 4, in contradiction to our computation.
This contradiction shows: dim Xτ ≥ 2; hence a(Z) ≥ 2.

To finish the proof, we should show a(Z) ≤ 2. We can easily derive this from
the sequences (7) and (8) as follows: From (8) we obtain, for all m ∈ Z,

P (m) := h0(K−m
2 )− h0(K−m−1

2 ) ≤ h0(K−m
S )

and from (7)

h0(K−m
S )− h0(K−(m−1)

S ) ≤ h0(N⊗m) ≤ 1.

Thus P (m) grows at most linearly in m. Hence, h0(K−m
2 ) grows at most quadrati-

cally. This means (cf. [C1]): a(Z) = κ(Z, K− 1
2 ) ≤ 1+κ(S, K−1

S ) ≤ 2+κ(C, N) ≤ 2,
as desired.
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4. The existence theorem

In this section we apply the results of Section 3 to prove the following theorem:

Theorem 4.1. There exist twistor spaces over 4CP2 having algebraic dimension
two.

One method to establish the existence of twistor spaces is to study the defor-
mation theory of known twistor spaces. It was developed by Donaldson–Friedman
[DonF] (see also Campana [C1] and LeBrun [LeB2]). We use the following theorem:

Theorem 4.2 ([C1], [C3], [DonF], [PP2]). Let Z be a LeBrun twistor space, n ≥
4 and S ∈ | − 1

2K| a smooth real divisor. Then: Any real member of a small
deformation of Z is again a twistor space. Furthermore, any small deformation of
S with real structure is induced by a deformation of Z in the sense that the deformed
surfaces are members of the fundamental system of the deformed twistor spaces.

We prove Theorem 4.1 by constructing a small deformation with real structure
of a smooth rational surface S = S0 ∈ | − 1

2K| in a certain twistor space. We
shall prove that there exist real deformed surfaces containing in their anticanonical
system a smooth curve whose normal bundle is a torsion element in the Picard
group. The result then follows by Theorems 3.4 and 4.2.

We shall use the explicitly known twistor spaces, which are discovered by C. Le-
Brun [LeB1] and investigated by H. Kurke [Ku]. They are described as modifi-
cations of conic–bundles over P1 × P1. Let us recall the structure of general real
surfaces S ∈ | − 1

2K| in generic LeBrun twistor spaces [Ku], [LeB1]: S contains a
twistor line F ⊂ S. On S we have (F 2) = 0 and dim |F | = 1. Since (KS)2 = 0, we
obtain: the morphism π : S → P1 defined by |F | exhibits S as a successive blow–
up of eight points on a ruled surface. More precisely, we know (cf. [PP2]) that π
factors over a blow–up S → P1×P1, which is compatible with real structures. The
real structure on P1 × P1 is given by the antipodal map on the first factor and the
usual real structure on the second factor. The blown–up set is real and consists
of eight distinct points, lying on two conjugate fibres of the first projection. The
fibres of the second projection correspond to the elements of |F |. This situation is
illustrated by the following picture:

r

r

r

r

r

r

r

r

P1 (usual real structure)
?
pr2

-pr1 P1 (antipodal map)

None of the blown–up points lie on a real fibre of the second projection since all
real elements in |F | are irreducible (real twistor lines).

To begin our construction, we fix a blowing–up S = S0 → P1×P1 of eight points
{P1, . . . , P8} as described above and choose a curve C0 ⊂ P1 × P1 of type (2, 2)
containing {P1, . . . , P8} as smooth points.

Consider the universal family of curves of type (2, 2) on P1 × P1, which is given
as C = {(C, x)|x ∈ C} ⊂ |O(2, 2)| × (P1 × P1). The family C → B := |O(2, 2)| is a
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deformation of C0 with basis B ∼= P8. By 0 ∈ B we denote the point corresponding
to C0 and by Ct ⊂ P1 × P1 the fibre over t ∈ B.

By B′ → B we denote the eight–fold fibre product B′ = C ×B C ×B · · · ×B C →
B. Then the pulled back family C′ := C ×B B′ → B′ has eight natural sections
P1, . . . , P8, given by the projections pri : B′ → C.

We denote by B the quotient under the natural action of the symmetric group S8

on the open set of eight–tuples of pairwise distinct points (which is the complement
of all twofold diagonals). The family C′ → B′ descends to a family C → B. Since
the action of S8 is fibre preserving for B′ → B, we obtain a morphism B → B.
The union of the eight sections P1, . . . , P8 is S8–invariant; hence over B we obtain a

family of subschemes of P1×P1 of length eight Z =
8⋃

i=1

Pi(B) ⊂ C ⊂ B×(P1×P1) →
B. The given configuration of eight points on C0 defines a point 0 ∈ B. If we blow
up B × (P1 × P1) along Z, we obtain a family of surfaces S → B with fibre S0 = S
over 0 ∈ B.

The given real structure on P1 × P1 defines a real structure on B and C, such
that C → B is equivariant. Therefore, we finally obtain a real structure on B, C, Z
and S → B, such that all maps considered before are equivariant.

Hence, by Theorem 4.2, there exists a neighbourhood B
∗

of 0 ∈ B in the analytic
topology, such that any real St sits in a twistor space as a fundamental divisor. We
can choose B

∗
in such a way that for all t ∈ B

∗
the set of eight different points Zt

consists of smooth points of Ct. Therefore, the strict transform of Ct in St will be
isomorphic to Ct and we shall denote it also by Ct.

We wish now to study the order of the normal bundle Nt = NCt|St
of Ct ⊂ St.

Let us denote by U ⊂ B
∗

the open subset of those points t ∈ B
∗

with smooth
Ct. Its image U ⊂ B is also open since projections and flat maps are open. Since
Nt

∼= O(2, 2) ⊗ OCt(−Zt) ∈ Pic0(Ct), we obtain a morphism η : U → Pic0(C|U)
with η(t) = Nt. This morphism is compatible with real structures.

To achieve our theorem, we have to show the existence of a real point in U(R),
which is sent by η to a point of finite order. This will follow from

Lemma 4.3. Let E be an elliptic curve (over C) with a real structure and L a line
bundle on E which has degree 8 and is real. Let ∆ ⊂ E × · · · ×E/S8 be the moduli
space of sets of eight distinct (closed) points on E. Let η : ∆ → Pic0(E) be the map

defined by η({x1, . . . , x8}) = L ⊗OE(−
8∑

i=1

xi). Then we have:

(i) The real structure on E induces one on ∆ and Pic0(E), such that η is equi-
variant.

(ii) The real points Pic0(E)(R) form a real one–dimensional Lie group. The points
of finite order form a dense subset in this group.

(iii) η : ∆ → Pic0(E) and ηR : ∆(R) → Pic0(E)(R) are submersions and are,
therefore, open maps.

Proof. Observe first that the precise definition of η as a holomorphic map comes
from the universality property of the variety Pic0(E).

(i) The real structure on Pic0(E) is defined by M 7→ σ∗M. (We denote by M
the complex conjugate line bundle and σ is the antiholomorphic involution on E
defining the real structure.) Since L is, by assumption, a fixed point of this real
structure, the map η is, by definition, equivariant.
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(ii) Since OE ∈ Pic0(E) is a real point, the subset Pic0(E)(R) of real points
forms a real one–dimensional submanifold of Pic0(E). Since the formation of ten-
sor products and duals is compatible with the real structure, Pic0(E)(R) forms a
subgroup of Pic0(E). Since U(1) is the unique connected compact one–dimensional
real abelian Lie group, the connected component of OE in Pic0(E)(R) must be
isomorphic to U(1). But the set of points of finite order in this group is dense. By
compactness, Pic0(E)(R) has only a finite number of connected components. Then
it is easy to see that the set of points of finite order is dense in Pic0(E)(R).

(iii) Let ∆̃ ⊂ E × · · · × E be the preimage of ∆, that is, the set of eight–tuples
of pairwise distinct points. Since E is elliptic, by Riemann–Roch there exist eight

points Q1, . . . , Q8 ∈ E with L ∼= OE(
8∑

i=1

Qi). If we define ηi : E → Pic0(E) by

ηi(P ) := OE(Qi − P ) and η̃ = (η1, . . . , η8), we obtain a commutative diagram:

∆̃
η̃−→ Pic0(E)× · · · × Pic0(E)

↓ ↓mult

∆
η−→ Pic0(E).

Since all ηi are isomorphisms, η̃ is an open embedding, hence a submersion. Since
multiplication is always a submersion, we have the same property for η.

Finally, since η is equivariant, its tangent map has the same property. But, if
a complex linear map is compatible with real structures and surjective, the corre-
sponding map on real subspaces is also surjective, since it can be described by the
same matrix. So we obtain that ηR is a submersion. Submersions are open by the
implicit function theorem.

Proof of Theorem 4.1. We take any t ∈ U(R) and apply Lemma 4.3 to E = Ct and
L = O(2, 2)⊗ OCt . This gives the existence of a point t ∈ U(R) over t, defining a
torsion point η(t). The result follows now from Theorem 3.4.

Open Problem. Which values for τ can be realized by twistor spaces over 4CP2?

Our proof of Theorem 4.1 only shows that large values of τ really occur.
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