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1. Introduction

A bar-joint framework in d-dimensional Euclidean space Rd is a pair (G, p) where G = (V, E) is a 
simple undirected graph and p ∈ (Rd)V is an assignment of points in Rd to each of the vertices in G. The 
edges of this embedded graph can be viewed as rigid bars of fixed length and the vertices as rotational 
joints. Such models arise naturally in engineering and the natural sciences in contexts where their rigidity 
and flexibility properties are of particular interest (e.g. structural engineering [15], mineralogy [9], protein 
analysis [8], network localisation [1] and formation control [14]). In this article we continue the recent 
development of operator theoretic methods for the analysis of infinitesimal (i.e. first-order) flexibility in 
bar-joint frameworks (and other related frameworks). This line of research was initiated in Owen and Power 
([18]). (See also [2,13,19,20].)

The presence of an infinitesimal flex can sometimes be explained by an inherent symmetry in the bar-joint 
framework and in recent years this interplay between symmetry and rigidity has received considerable atten-
tion ([4,10]). For example, it is well-known that the rigidity matrix R(G, p) for a finite bar-joint framework 
with an abelian symmetry group admits a block-diagonalisation over the irreducible representations of the 
group. Moreover, the diagonal blocks can be described explicitly by associated orbit matrices. This property 
has been utilised to obtain combinatorial characterisations of so-called forced and incidental rigidity for 
finite bar-joint frameworks in dimension 2. (See [12,22].)

Periodic bar-joint frameworks have also received much attention in recent years. Here R(G, p) is an 
infinite matrix and so operator theory naturally comes to the fore. In [18], it is shown that the rigidity 
matrix for a periodic bar-joint framework gives rise to a Hilbert space operator which is unitarily equivalent 
to a multiplication operator MΦ. The symbol function Φ is matrix-valued and defined on the d-torus Td. 
The set of points in Td where Φ has a non-zero kernel is known as the RUM spectrum and takes its name 
from the phenomenon of rigid unit modes (RUMs) in silicates and zeolites (see [5,6,9]).

RUM theory for periodic bar-joint frameworks and the aforementioned decomposition theory for finite 
bar-joint frameworks can be viewed as two sides of the same coin. The first aim of this article is to formalise 
this viewpoint using techniques from Fourier analysis. The second aim is to extend the theory so that it 
may be applied in new contexts.

In Section 2, we prove a variant of the well-known result that intertwiners for the bilateral shift on �2(Z)
are unitarily equivalent to multiplication operators on L2(T ) (Theorem 2.8). The distinguishing features of 
our theorem are that it takes place in the setting of a general locally compact abelian group, with vector-
valued function spaces, and in the presence of an additional twist arising from a unitary representation.

In Section 3, we adopt the approach taken in [13] and introduce the more general notions of a frame-
work (G, ϕ) for a pair of Hilbert spaces X and Y and an accompanying coboundary matrix C(G, ϕ). This 
convention simplifies the proofs and also allows the results to be applied in a much wider variety of settings 
(as demonstrated in the final section). Applying the results of Section 2, we show that a framework with a 
discrete abelian symmetry group gives rise to a Hilbert space coboundary operator C(G, ϕ) which admits 
a factorisation as illustrated in Fig. 1 (Theorem 3.6). Note that the block diagonalisation result for finite 
bar-joint frameworks and the unitary equivalence result for periodic bar-joint frameworks described above 
both follow from this factorisation. We then provide an explicit description of the associated symbol function 
Φ in terms of generalised orbit matrices (Theorem 3.7) and as a trigonometric polynomial (Corollary 3.10).

In Section 4, we introduce a generalised RUM spectrum Ω(G) for frameworks with a discrete abelian 
symmetry group Γ and show how to construct χ-symmetric vectors z(χ, a) which lie in the kernel of the 
coboundary matrix C(G, ϕ) for each χ ∈ Ω(G) (Theorem 4.1). Note that here we continue to work in the 
more general setting of coboundary operators and that the RUM spectrum is presented as a subset of 
the dual group Γ̂. In the terminology of [5,6,9], characters χ ∈ Γ̂ correspond to wave-vectors in reciprocal 
space and χ-symmetric vectors which lie in the kernel of C(G, ϕ) correspond to generalised rigid unit 
modes.
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Fig. 1. Factorisation of the �2-coboundary operator C(G,ϕ) for a framework (G,ϕ) with a discrete abelian symmetry group Γ.

Finally, in Section 5, we illustrate the results of the preceding sections with several contrasting examples. 
These include a bar-joint framework in R3 with screw axis symmetry, a direction-length framework in R2

with both translational and reflectional symmetry and a symmetric bar-joint framework in R3 with mixed-
norm distance constraints. For each example, we provide some necessary background, formulate the symbol 
function Φ, compute the RUM spectrum Ω(G) and construct generalised rigid unit modes z(χ, a) for points 
χ ∈ Ω(G). To the best of our knowledge, the interplay between rigidity and symmetry has not previously 
been explored in these contexts.

2. Intertwining relations

Let Γ be a locally compact Hausdorff abelian group. Denote by L2(Γ) the Hilbert space of square inte-
grable functions, i.e. Borel-measurable functions f : Γ → C such that,

∫
Γ

|f(γ)|2 dγ < ∞

where we use normalised Haar measure on Γ. Recall the Haar measure of a locally compact group is 
decomposable on Γ; in particular, Γ contains a σ-compact clopen subgroup ([7]).

2.1. The scalar case

Given a set S of bounded operators on a Hilbert space H, recall that its commutant is the unital w∗-closed 
algebra

S ′ = {T ∈ B(H) : TS = ST, for all S ∈ S}.

If S is a selfadjoint set, i.e. S∗ ∈ S for all S ∈ S, then S ′ is also selfadjoint and hence a C∗-algebra. 
Moreover, S is a set of commuting operators if and only if S ⊆ S ′. Thus, an operator set is maximal abelian
if and only if S = S ′ ([16]).

Proposition 2.1. The algebra of multiplication operators Mμ = {Mf : f ∈ L∞(Γ)} is a maximal abelian 
selfadjoint subalgebra of B(L2(Γ)).

Proof. Mμ is abelian, so Mμ is a subset of its commutant. For the reverse inclusion, let T ∈ (Mμ)′. We 
shall show that there exists g ∈ L∞(Γ), such that T = Mg.

(i) Suppose first that Γ is compact, so μ(Γ) < ∞. Then the constant function 1Γ lies in L2(Γ). Define 
g = T1Γ ∈ L2(Γ). Then for every f ∈ L∞(Γ), we have
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Tf = T (f1Γ) = TMf1Γ = MfT1Γ = Mfg = fg = gf.

Hence, it suffices to show that g ∈ L∞(Γ). Let α > 0 and Γα = {γ ∈ Γ : |g(γ)| > α}. Let 1α be the 
characteristic function of Γα. Then

‖T1α‖2
2 =

∫
Γ

|g1α|2dμ =
∫
Γα

|g|2dμ ≥ α2μ(Γα) = α2‖1α‖2
2,

hence α ≤ ‖T‖ whenever μ(Γα) > 0. Thus ‖g‖∞ ≤ ‖T‖.
(ii) Suppose now that Γ is σ-compact. Then Γ can be written as a countable union of pairwise disjoint 

precompact sets Γn. Write 1n for the characteristic function of Γn and let gn = T1n. Similarly to 
the previous case, we obtain that TM1n

= Mgn and ‖gn‖∞ ≤ ‖T‖ for every n ∈ N. Hence define 
g ∈ L∞(Γ) by g

∣∣
Γn

= gn
∣∣
Γn

, for every n ∈ N. Then ‖g‖∞ ≤ supn ‖gn‖∞ ≤ ‖T‖, so g ∈ L∞(Γ), and for 
every f ∈ L2(Γ) we have

Mgf =
∞∑

n=1
M1n

Mgf =
∞∑

n=1
Mgnf =

∞∑
n=1

TM1n
f =

∞∑
n=1

M1n
Tf = Tf.

(Each of the infinite sums should be interpreted as limits in L2 of the partial sums.)
(iii) In the general case, let H be a clopen σ-compact subgroup of Γ and let Z be a subset of Γ that 

contains exactly one element of each coset of H, so that Γ can be written as the disjoint union of 
the sets z + H, z ∈ Z. For each z ∈ Z, denote by 1z the characteristic function of z + H and let 
gz = T1z. Similarly to the above cases, we have TM1z

= Mgz and ‖gz‖∞ ≤ ‖T‖ for every z ∈ Z. 
Define g ∈ L∞(Γ) by g

∣∣
z+H

= gz
∣∣
z+H

, for every z ∈ Z. Then g is locally almost everywhere well-
defined, ‖g‖∞ ≤ supz ‖gz‖∞ ≤ ‖T‖, so g ∈ L∞(Γ). Now given any function f ∈ L2(Γ), there exists a 
countable family {zn : n ∈ N} ⊆ Z such that the set supp(f) ∩ (Γ\(∪n zn +H)) is null ([21, Appendix 
E8]). Check that since T commutes with the multiplication operators of characteristic functions, it 
follows that supp(Tf) ⊆ supp(f). Hence

Mgf =
∞∑

n=1
M1zn

Mgf =
∞∑

n=1
Mgzn

f =
∞∑

n=1
TM1zn

f =
∞∑

n=1
M1zn

Tf = Tf. �

The Fourier transform F : (L1 ∩ L2)(Γ) → L2(Γ̂) given by the formula

f̂(ξ) =
∫
Γ

ξ(γ)f(γ)dγ

extends uniquely to a unitary isomorphism from L2(Γ) to L2(Γ̂) ([7,21]). The inverse Fourier transform of 
a function f ∈ L2(Γ̂) is denoted f̌ .

For each γ ∈ Γ, denote by Dγ the unitary operator

Dγ : L2(Γ) → L2(Γ), f(γ′) �→ f(γ′ − γ).

Also, denote by δγ ∈ ˆ̂Γ, the scalar function δγ(ξ) = ξ(γ) for each ξ ∈ Γ̂. Note that the map δ : Γ → ˆ̂Γ, 
γ �→ δγ , is the Pontryagin map ([7]).

Proposition 2.2. Let γ ∈ Γ and let Mδγ be the multiplication operator on L2(Γ̂) by the scalar function δγ. 
Then,
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M∗
δγ = FDγF

−1.

Proof. Let f ∈ (L1 ∩ L2)(Γ) such that f̂ ∈ L1(Γ̂). For every ξ ∈ Γ̂ we have

(FDγF
−1f̂)(ξ) =

∫
Γ

(DγF
−1f̂)(x)ξ(x)dx

=
∫
Γ

(F−1f̂)(x− γ)ξ(x)dx

x−γ→x=
∫
Γ

(F−1f̂)(x)ξ(x + γ)dx

=
∫
Γ

(F−1f̂)(x)ξ(x)dx ξ(γ)

= (FF−1f̂)(ξ)ξ(γ)

= ξ(γ)f̂(ξ)

= δγ(ξ)f̂(ξ).

Thus, it follows that FDγF
−1f̂ = δγ f̂ . The result now follows since the set of such functions f̂ forms a 

dense subspace in L2(Γ̂) ([17,21]). �
Corollary 2.3. Let L ∈ B(L2(Γ)) and define Λ = FLF−1 ∈ B(L2(Γ̂)). Then, for each γ ∈ Γ, the following 
statements are equivalent.

(i) DγL = LDγ .
(ii) M∗

δγ
Λ = ΛM∗

δγ
.

Proof. Let γ ∈ Γ. Note that DγL = LDγ if and only if

FDγF
−1FLF−1 = FLF−1FDγF

−1.

The result now follows by Proposition 2.2. �
Proposition 2.4. Let L ∈ B(L2(Γ)). Then L satisfies the commuting property DγL = LDγ for all γ ∈ Γ if 
and only if L is unitarily equivalent to a multiplication operator MΦ ∈ B(L2(Γ̂)) for some Φ ∈ L∞(Γ̂). In 
particular, L = F−1MΦF .

Proof. Suppose first that L ∈ B(L2(Γ)) and DγL = LDγ for all γ ∈ Γ. By Corollary 2.3, setting Λ =
FLF−1 ∈ B(L2(Γ̂)), we obtain that

M∗
δγΛ = ΛM∗

δγ ,

for all γ ∈ Γ. Let f, g ∈ L2(Γ̂) ∩ L∞(Γ̂). Then, for all γ ∈ Γ,

F ((Λf)g)(γ) =
∫

δγ(ξ)(Λf)(ξ)g(ξ)dξ

Γ̂
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=
∫
Γ̂

(M∗
δγΛf)(ξ)g(ξ)dξ

=
∫
Γ̂

(ΛM∗
δγf)(ξ)g(ξ)dξ

= 〈ΛM∗
δγf, g〉L2(Γ̂)

Similarly, for all γ ∈ Γ,

F (f(Λ∗g))(γ) =
∫
Γ̂

δγ(ξ)f(ξ)Λ∗g(ξ)dξ

=
∫
Γ̂

(M∗
δγf)(ξ)Λ∗g(ξ)dξ

= 〈M∗
δγf,Λ

∗g〉L2(Γ̂)

= 〈ΛM∗
δγf, g〉L2(Γ̂)

Therefore, by the uniqueness of the Fourier transform we obtain

(Λf)g = fΛ∗g.

It now follows that, for all h ∈ L∞(Γ̂),

〈MhΛf, g〉L2(Γ̂) = 〈Mhf,Λ∗g〉L2(Γ̂) = 〈ΛMhf, g〉L2(Γ̂)

for every f, g ∈ L2(Γ̂) ∩ L∞(Γ̂), and since these functions are dense in L2, we get MhΛ = ΛMh, so Λ
commutes with the algebra Mμ of multiplication operators. Thus, the result follows from Proposition 2.1.

The reverse direction is obtained from Corollary 2.3, so the proof is complete. �
Remark 2.5. If Γ is a discrete abelian group and Φ ∈ L1(Γ̂) then the operator L in Proposition 2.4 satisfies,

L(f)(γ′) =
∫
Γ

Φ̂(γ′ − γ)f(γ)dγ,

for all γ′ ∈ Γ. In particular, if Γ = Z then the matrix for L is the Laurent matrix with symbol Φ.

2.2. Vector-valued functions

Let Γ be a locally compact abelian group and let X and Y be complex Hilbert spaces. Let also {x1, x2, . . . }
and {y1, y2, . . . } be orthonormal bases on X and Y , respectively. Denote by L2(Γ, X) the Hilbert space of 
square integrable X-valued functions. i.e. Bochner-measurable functions f : Γ → X such that,

∫
Γ

‖f(γ)‖2 dγ < ∞

where we use normalised Haar measure on Γ. Note that we identify the Hilbert spaces L2(Γ, X) and L2(Γ) ⊗
X; given any g ∈ L2(Γ), the function gk ∈ L2(Γ, X) defined by gk(γ) = g(γ)xk, is identified with the 
elementary tensor g ⊗ xk ∈ L2(Γ) ⊗X.
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The Fourier transform FX ∈ B(L2(Γ, X), L2(Γ̂, X)) is the unitary operator given by FX = F ⊗1X , where 
1X is the identity operator on X. For each γ ∈ Γ, denote by Uγ and Wγ the unitary operators

Uγ = Dγ ⊗ 1X : L2(Γ, X) → L2(Γ, X), f(γ′) �→ f(γ′ − γ),
Wγ = Dγ ⊗ 1Y : L2(Γ, Y ) → L2(Γ, Y ), g(γ′) �→ g(γ′ − γ).

Given now an operator T ∈ B(L2(Γ, X), L2(Γ, Y )), for each i, j let Tij ∈ B(L2(Γ)) be the bounded 
operator that is uniquely defined by the sesquilinear form,

〈Tijf, g〉 = 〈T (f ⊗ xj), g ⊗ yi〉, f, g ∈ L2(Γ). (1)

We call Tij a matrix element of T . A bounded operator T ∈ B(L2(Γ, X), L2(Γ, Y )) is called a multiplication 
operator if there exists Φ ∈ L∞(Γ, B(X, Y )) such that

∀f∈L2(Γ,X) (Tf)(γ) = Φ(γ)f(γ) a.e. γ.

We refer to the function Φ as the operator-valued symbol function for T and we write T = MΦ. In terms of 
the matrix elements Tij from (1), we have Tij = MΦij

where Φij ∈ L∞(Γ).

Proposition 2.6. Let L ∈ B(L2(Γ, X), L2(Γ, Y )). Then L satisfies the intertwining property WγL = LUγ for 
all γ ∈ Γ if and only if L is unitarily equivalent to a multiplication operator MΦ ∈ B(L2(Γ̂, X), L2(Γ̂, Y ))
for some Φ ∈ L∞(Γ̂, B(X, Y )). In particular, L = F−1

Y MΦFX .

Proof. Suppose that the intertwining property holds. Then for every f, g ∈ L2(Γ) we have

〈L(f ⊗ xj),W ∗
γ (g ⊗ yi)〉 = 〈WγL(f ⊗ xj), g ⊗ yi〉 = 〈LWγ(f ⊗ xj), g ⊗ yi〉.

Equivalently, by the definition of Wγ ,

〈L(f ⊗ xj), (D∗
γg) ⊗ yi〉 = 〈L((Dγf) ⊗ xj), g ⊗ yi〉.

This implies,

〈Lijf, (D∗
γg)〉 = 〈Lij(Dγf), g〉,

which implies

〈DγLijf, g〉 = 〈LijDγf, g〉.

Thus, for each i, j, the operator Lij commutes with Dγ , for all γ ∈ Γ. Hence by Proposition 2.4, for each 
i, j we have Lij = F−1

Y MΦij
FX , for some Φij ∈ L∞(Γ̂).

Define T = FY LF
−1
X . This is a bounded operator that satisfies

(FY UγF
−1
Y )T = T (FXWγF

−1
X ) ∀γ ∈ Γ.

As Tij = MΦij
, we conclude that T = MΦ, where Φ is the B(X, Y ) valued function with matrix elements 

Φi,j . Moreover

‖Φ‖L∞(Γ̂,B(X,Y )) = ‖T‖ = ‖L‖.

Once again, the reverse direction follows by straightforward calculations. �
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2.3. Intertwining with a twist

Let U(X) denote the unitary group of X and let π : Γ → U(X) be a unitary representation of Γ on 
X. Define Tπ ∈ B(L2(Γ, X)) by (Tπf)(γ) = π(−γ)f(γ). For each γ ∈ Γ, define Uγ,π ∈ B(L2(Γ, X)) by 
(Uγ,πf)(γ′) = π(γ)f(γ′ − γ).

Lemma 2.7. Let π : Γ → U(X) be a unitary representation. Then, for each γ ∈ Γ,

TπUγ,π = UγTπ.

Proof. Given f ∈ L2(Γ, X) and γ ∈ Γ, we have

(TπUγ,πf)(γ′) = π(−γ′)(Uγ,πf)(γ′) = π(−γ′)π(γ)f(γ′ − γ) = π(γ − γ′)f(γ′ − γ),

while

(UγTπf)(γ′) = (Tπf)(γ′ − γ) = π(γ − γ′)f(γ′ − γ),

so the proof is complete. �
Theorem 2.8. Let C ∈ B(L2(Γ, X), L2(Γ, Y )) and let π : Γ → U(X) be a unitary representation. Then 
WγC = CUγ,π for all γ ∈ Γ if and only if C = LTπ, where L is unitarily equivalent to a multiplication 
operator MΦ ∈ B(L2(Γ̂, X), L2(Γ̂, Y )) for some Φ ∈ L∞(Γ̂, B(X, Y )). In particular, L = F−1

Y MΦFX .

Proof. Suppose WγC = CUγ,π for all γ ∈ Γ. Then, by Lemma 2.7,

WγCT−1
π = CUγ,πT

−1
π = CT−1

π Uγ

for all γ ∈ Γ. The conclusion now follows from Proposition 2.6 on taking L = CT−1
π . Conversely, suppose 

C = LTπ, where L is unitarily equivalent to a multiplication operator MΦ ∈ B(L2(Γ̂, X), L2(Γ̂, Y )) for some 
Φ ∈ L∞(Γ̂, B(X, Y )). By Proposition 2.6 and Lemma 2.7, for each γ ∈ Γ,

WγC = WγLTπ = LUγTπ = LTπUγ,π = CUγ,π. �
3. Symbol functions for symmetric frameworks

In this section we introduce frameworks (G, ϕ) and their associated coboundary matrices C(G, ϕ). We 
show that the action of a discrete abelian group on (G, ϕ) gives rise to a Hilbert space coboundary operator 
which satisfies twisted intertwining relations of the form considered in Section 2. In particular, this cobound-
ary operator can be expressed as a composition LTπ in the manner of Theorem 2.8, where L is unitarily 
equivalent to a multiplication operator MΦ. We then present an explicit formula for the operator-valued 
symbol function Φ.

3.1. Frameworks

Let X and Y be finite dimensional complex Hilbert spaces. A framework for X and Y is a pair (G, ϕ)
consisting of a simple undirected graph G = (V, E) and a collection ϕ = (ϕv,w)v,w∈V of linear maps 
ϕv,w : X → Y with the property that ϕv,w = 0 if vw /∈ E and ϕv,w = −ϕw,v for all vw ∈ E. We will assume 
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v1 v2

v4 v3

⎡
⎢⎢⎢⎢⎢⎢⎣

v1 v2 v3 v4

v1v2 ϕv1,v2 −ϕv1,v2 0 0

v2v3 0 ϕv2,v3 −ϕv2,v3 0

v3v4 0 0 ϕv3,v4 −ϕv3,v4

v4v1 ϕv1,v4 0 0 −ϕv1,v4

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 2. A 4-cycle (left) and coboundary matrix (right).

throughout this section that the vertex set V is a finite or countably infinite set. The graph G is said to 
have bounded degree if supv∈V deg(v) < ∞, where deg(v) denotes the degree of the vertex v ∈ V .

A coboundary matrix for (G, ϕ) is a matrix C(G, ϕ) with rows indexed by E and columns indexed by V . 
The row entries for a given edge vw ∈ E are as follows,

[ v w

vw · · · 0 ϕv,w 0 · · · 0 ϕw,v 0 · · ·
]
.

Example 3.1. Let (G, ϕ) be a framework for X and Y where G = (V, E) is the 4-cycle with vertex set 
V = {v1, v2, v3, v4} and edge set E = {v1v2, v2v3, v3v4, v4v1}. A coboundary matrix for (G, ϕ) is shown in 
Fig. 2.

Note that a coboundary matrix gives rise to the linear map,

C(G,ϕ) : XV → Y E , (xv)v∈V �→ (ϕv,w(xv − xw))vw∈E .

We recall the following result.

Proposition 3.2. [13, Corollary 2.9]. Let (G, ϕ) be a framework for X and Y . If G is a countably infinite 
graph with bounded degree then the following statements are equivalent.

(i) supvw∈E ‖ϕv,w‖op < ∞.
(ii) C(G, ϕ) ∈ B(�p(V, X), �p(E, Y )), for all p ∈ [1, ∞].
(iii) C(G, ϕ) ∈ B(�p(V, X), �p(E, Y )), for some p ∈ [1, ∞].

3.2. Gain graphs

Let Γ be an additive group with identity element 0. A Γ-symmetric graph is a pair (G, θ) where G =
(V, E) is a simple undirected graph with automorphism group Aut(G) and θ : Γ → Aut(G) is a group 
homomorphism. For convenience, we suppress θ and write γv instead of θ(γ)v for each group element γ ∈ Γ
and each vertex v ∈ V . We also write γe instead of (γv)(γw) for each γ ∈ Γ and each edge e = vw ∈ E. 
The orbit of a vertex v ∈ V (respectively, an edge e ∈ E) under θ is the set [v] = {γv : γ ∈ Γ} (respectively, 
[e] = {γe : γ ∈ Γ}). We denote by V0 the set of all vertex orbits and by E0 the set of all edge orbits.

We will assume throughout that θ acts freely on the vertices and edges of G. This means γv �= v and 
γe �= e for all γ ∈ Γ\{0} and for all vertices v ∈ V and edges e ∈ E. We will also assume that V0 and E0
are finite sets.

Lemma 3.3. Let (G, θ) be a Γ-symmetric graph where θ acts freely on the vertices and edges of G and E0 is 
finite. Then G has bounded degree.
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v1 v2

v3 v4

0

1

[v1] [v2]

Fig. 3. A Z2-symmetric graph (left) and gain graph (right).

Proof. Let v ∈ V and suppose vw1, vw2, vw3 ∈ E are distinct edges which belong to the same edge orbit. 
Then vw2 = γ(vw1) for some γ ∈ Γ\{0}. Since θ acts freely on V it follows that w2 = γv. Note that 
vw3 = γ′(vw2) for some γ′ ∈ Γ\{0}. Again, since θ acts freely on V it follows that v = γ′w2 = (γ′γ)v. 
Thus γ′ = −γ and so vw1 = −γ(vw2) = γ′(vw2) = vw3, a contradiction. We conclude that each edge orbit 
contains at most two edges which are incident with v. Thus v has at most 2|E0| incident edges. �

The quotient graph G0 is the multigraph with vertex set V0, edge set E0 and incidence relation satisfying 
[e] = [v][w] if some (equivalently, every) edge in [e] is incident with a vertex in [v] and a vertex in [w]. For 
each vertex orbit [v] ∈ V0, choose a representative vertex ṽ ∈ [v] and denote the set of all such representatives 
by Ṽ0. Now fix an orientation on the edges of the quotient graph G0 so that each edge in G0 is an ordered 
pair [e] = ([v], [w]). Then for each directed edge [e] = ([v], [w]) there exists a unique group element γ ∈ Γ
such that ṽ(γw̃) ∈ [e]. This group element is referred to as the gain on the directed edge [e] and is denoted 
ψ[e]. A gain graph for the Γ-symmetric graph (G, θ) is any edge-labelled directed multigraph obtained from 
the quotient graph G0 in this way.

Example 3.4. Consider again the 4-cycle G = (V, E) with vertex set V = {v1, v2, v3, v4} and edge set 
E = {v1v2, v2v3, v3v4, v4v1}. Let θ : Z2 → Aut(G) be the group homomorphism with θ(1)v1 = v3 and 
θ(1)v2 = v4. The Z2-symmetric graph (G, θ) has two distinct vertex orbits [v1] = {v1, v3} and [v2] = {v2, v4}, 
and two distinct edge orbits [v1v2] = {v1v2, v3v4} and [v1v4] = {v1v4, v2v3}. A gain graph for (G, θ) is 
illustrated in Fig. 3.

For each directed edge [e] = ([v], [w]) in the gain graph with gain γ we choose ẽ = ṽ(γw̃) ∈ E to be the 
representative edge for the edge orbit [e]. The set of all such representative edges will be denoted Ẽ0. Note 
that since θ acts freely on the vertex set V and edge set E we have natural bijections,

βV : Γ × V0 → V, (γ, [v]) �→ γṽ, and, βE : Γ × E0 → E, (γ, [e]) �→ γẽ.

For more on gain graphs we refer the reader to [12].

3.3. Symmetric frameworks

Let Γ be a discrete abelian group and denote by Isom(X) the group of affine isometries of X. A Γ-
symmetric framework is a tuple G = (G, ϕ, θ, τ) where τ : Γ → Isom(X) is a group homomorphism, (G, θ)
is a Γ-symmetric graph and (G, ϕ) is a framework for X and Y with the property that,

ϕγv,γw = ϕv,w ◦ τ(−γ), for all γ ∈ Γ and all v, w ∈ V.

For each γ ∈ Γ, let dτ(γ) denote the linear isometry on X that is uniquely defined by the linear part 
of the affine isometry τ(γ). We denote by τ̃ : Γ → U(XV0) the unitary representation with τ̃(γ)(x) =
(dτ(γ)x[v])[v]∈V0 for all x = (x[v])[v]∈V0 ∈ XV0 .
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Given a vector z = (zv)v∈V ∈ XV we will write ze = zv − zw for each edge e = vw ∈ E where the 
corresponding directed edge [e] in the gain graph is directed from [v] to [w]. We will also write ϕe = ϕv,w

for such an edge.
For each p ∈ [1, ∞], the bijections βV and βE give rise to isometric isomorphisms,

SV : �p(V,X) → �p(Γ, XV0), z = (zv)v∈V �→ (SV (z)γ)γ∈Γ,

where SV (z)γ = (zγṽ)[v]∈V0 , and,

SE : �p(E, Y ) → �p(Γ, Y E0), z = (ze)e∈E �→ (SE(z)γ)γ∈Γ,

where SE(z)γ = (zγẽ)[e]∈E0 . We define the bounded operator,

C̃(G,ϕ) := SE ◦ C(G,ϕ) ◦ S−1
V : �p(Γ, XV0) → �p(Γ, Y E0).

For each p ∈ [1, ∞] and each γ ∈ Γ, we have an associated pair of isometric isomorphisms Uγ,τ̃ ∈
B(�p(Γ, XV0)) and Wγ ∈ B(�p(Γ, Y E0)) where,

(Uγ,τ̃f)(γ′) = τ̃(γ)f(γ′ − γ), ∀ f ∈ �p(Γ, XV0),

(Wγg)(γ′) = g(γ′ − γ), ∀ g ∈ �p(Γ, Y E0).

Proposition 3.5. Let G = (G, ϕ, θ, τ) be a Γ-symmetric framework for X and Y . Then, for all γ ∈ Γ,

Wγ ◦ C̃(G,ϕ) = C̃(G,ϕ) ◦ Uγ,τ̃ .

Proof. Let γ ∈ Γ and let f ∈ �p(Γ, XV0). Then f = SV (u) where u = (uv)v∈V ∈ �p(V, X) has components 
uv = f(γ′)[v] for v = βV (γ′, [v]). We have,

C̃(G,ϕ)(f) = SE ◦ C(G,ϕ) ◦ S−1
V (f) = SE (ϕv,w(uv − uw))vw∈E = g,

where g ∈ �p(Γ, Y E0) satisfies g(γ′) = (ϕγ′ẽ(uγ′ẽ))[e]∈E0 for each γ′ ∈ Γ. Note that,

Wγ(g)(γ′) = (ϕ(γ′−γ)ẽ(u(γ′−γ)ẽ))[e]∈E0 , for each γ′ ∈ Γ.

Let h = Uγ,τ̃ (f). Then h ∈ �p(Γ, XV0) and h(γ′) = τ̃(γ)f(γ′ − γ) for each γ′ ∈ Γ. Also, if v = βV (γ′, [v])
then,

h(γ′)[v] = dτ(γ)f(γ′ − γ)[v] = dτ(γ)u(γ′−γ)ṽ = dτ(γ)u−γv.

Thus h = SV (z) where z = (zv)v∈V ∈ �p(V, X) has components zv = dτ(γ)u−γv for all v ∈ V . We conclude 
that,

(C̃(G,ϕ) ◦ Uγ,τ̃ )f = SE ◦ C(G,ϕ) ◦ S−1
V (h) = SE (ϕe(ze))e∈E = g̃,

where g̃ ∈ �p(Γ, Y E0) satisfies g̃(γ′) = (ϕγ′ẽ(zγ′ẽ))[e]∈E0 for each γ′ ∈ Γ. It remains to show that Wγ(g) = g̃. 
To see this, note that for each [e] ∈ E0 and each γ′ ∈ Γ we have,

ϕγ′ẽ(zγ′ẽ) = ϕγ′ẽ(dτ(γ)u(γ′−γ)ẽ) = ϕγ′ẽ(τ(γ)u(γ′−γ)ẽ) = ϕ(γ′−γ)ẽ(u(γ′−γ)ẽ). �
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For each p ∈ [1, ∞], the unitary representation τ̃ : Γ → U(XV0) defined above gives rise to an isometric 
isomorphism Tτ̃ ∈ B(�p(Γ, XV0)) where,

(Tτ̃f)(γ) = τ̃(−γ)f(γ), ∀ f ∈ �p(Γ, XV0).

Theorem 3.6. Let G = (G, ϕ, θ, τ) be a Γ-symmetric framework for X and Y where G has a finite or a 
countably infinite vertex set, Γ is a discrete abelian group, θ acts freely on the vertices and edges of G and 
V0 and E0 are finite sets.

Then C(G, ϕ) ∈ B(�2(V, X), �2(E, Y )) and,

C(G,ϕ) = S−1
E ◦ F−1

Y E0 ◦MΦ ◦ FXV0 ◦ Tτ̃ ◦ SV ,

for some Φ ∈ L∞(Γ̂, B(XV0 , Y E0)).

Proof. By Lemma 3.3, G has bounded degree. Note that ϕ satisfies Proposition 3.2(i) and so C(G, ϕ) ∈
B(�2(V, X), �2(E, Y )). The result now follows from Theorem 2.8 and Proposition 3.5. �

We refer to Φ in the above theorem as the symbol function for the symmetric framework G.

3.4. The symbol function

Let G = (G, ϕ, θ, τ) be a Γ-symmetric framework for X and Y where Γ is a discrete abelian group. Fix a 
gain graph for the Γ-symmetric graph (G, θ) and let χ ∈ Γ̂. A χ-orbit matrix for G is a matrix OG(χ) with 
rows indexed by the directed edges of the gain graph and with columns indexed by V0. The row entries for 
a non-loop directed edge ([v], [w]) ∈ E0 with gain γ ∈ Γ are as follows,

[ [v] [w]
· · · 0 ϕṽ,γw̃ 0 · · · 0 χ(γ)ϕw̃,−γṽ 0 · · ·

]
.

The row entries for a loop edge ([v], [v]) ∈ E0 with gain γ ∈ Γ are as follows,

[ [v]
· · · 0 ϕṽ,γṽ + χ(γ)ϕṽ,−γṽ 0 · · ·

]
.

Note that each orbit matrix gives rise in natural way to a linear map OG(χ) : XV0 → Y E0 and that the 
function OG : Γ̂ → B(XV0 , Y E0), χ �→ OG(χ), is continuous. In particular, OG ∈ L∞(Γ̂, B(XV0 , Y E0)) is the 
operator-valued symbol function for a multiplication operator MOG ∈ B(L2(Γ̂, XV0), L2(Γ̂, Y E0)).

We now show that OG is the symbol function for the symmetric framework G.

Theorem 3.7. Let G = (G, ϕ, θ, τ) be a Γ-symmetric framework with symbol function Φ ∈ L∞(Γ̂, B(XV0, Y E0)).
Then,

Φ(χ) = OG(χ), a.e. χ ∈ Γ̂.

Proof. Let f̂ ∈ L2(Γ̂, XV0) and let f = F−1
XV0 (f̂) ∈ �2(Γ, XV0). Note that (T−1

τ̃ f)(γ) = τ̃(γ)f(γ). Thus 
T−1
τ̃ (f) = SV (z) where z = (zv)v∈V ∈ �2(V, X) has components zv = (τ̃(γ)f(γ))[v] for v = βV (γ, [v]). Now,

C̃(G,ϕ) ◦ T−1
τ̃ (f) = SE ◦ C(G,ϕ) ◦ S−1

V ◦ T−1
τ̃ (f) = SE (ϕe(ze)) = g,
e∈E
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where g ∈ �2(Γ, Y E0) satisfies g(γ) = (ϕγẽ(zγẽ))[e]∈E0 for each γ ∈ Γ.
Let [e] = ([v], [w]) ∈ E0 be a directed edge with gain γ ∈ Γ and let g[e] ∈ �2(Γ, Y ) be the [e]-component 

of g. Note that for each γ′ ∈ Γ,

g[e](γ′) = ϕγẽ(zγẽ)

= ϕγ′ẽ(dτ(γ′)f(γ′)[v] − dτ(γ′ + γ)f(γ′ + γ)[w])

= ϕẽ(f(γ′)[v] − dτ(γ)((U−γf)(γ′)[w])).

Also, by Proposition 2.2, for almost every χ ∈ Γ̂,

̂U−γf(χ) = δ−γ(χ)f̂(χ) = χ(−γ)f̂(χ) = χ(γ)f̂(χ),

and so,

ĝ[e](χ) = ϕẽ(f̂(χ)[v] − dτ(γ)(χ(γ)f̂(χ)[w])) = ϕṽ,γw̃(f̂(χ)[v]) + χ(γ)ϕw̃,−γṽ(f̂(χ)[w]).

Thus, for almost every χ ∈ Γ̂,

(MΦf̂)(χ) = (FY E0 ◦ C̃(G,ϕ) ◦ T−1
τ̃ f)(χ) = ĝ(χ) = OG(χ)f̂(χ). �

Corollary 3.8. Let G = (G, ϕ, θ, τ) be a Γ-symmetric framework with symbol function Φ. If G is a finite 
graph then the coboundary matrix C(G, ϕ) is equivalent to the direct sum,

⊕
χ∈Γ̂

OG(χ) :
⊕
χ∈Γ̂

XV0 →
⊕
χ∈Γ̂

Y E0 .

Proof. By Theorem 3.6, C(G, ϕ) is equivalent to MΦ. Note that since G is a finite graph and θ acts freely 
on the vertices and edges of G it follows that Γ, and hence also Γ̂, is finite. Thus, MΦ is equivalent to the 
direct sum ⊕χ∈Γ̂Φ(χ). Also, by Theorem 3.7, Φ(χ) = OG(χ) for all χ ∈ Γ̂ and so the result follows. �
Example 3.9. Consider again the framework (G, ϕ) in Example 3.1 and let (G, θ) be the Z2-symmetric graph 
described in Example 3.4. Let [e1] be the directed edge in the accompanying gain graph with gain 0 and let 
[e2] be the directed edge with gain 1. Note that the dual group for Z2 consists of characters χ0 and χ1 which 
satisfy χ0(1) = 1 and χ1(1) = −1. If G = (G, ϕ, θ, τ) is a Z2-symmetric framework then the associated orbit 
matrices for G take the following form,

OG(χ0) =
[ [v1] [v2]

[e1] ϕṽ1,ṽ2 −ϕṽ1,ṽ2

[e2] ϕṽ1,ṽ4 ϕṽ2,ṽ3

]
, OG(χ1) =

[ [v1] [v2]
[e1] ϕṽ1,ṽ2 −ϕṽ1,ṽ2

[e2] ϕṽ1,ṽ4 −ϕṽ2,ṽ3

]
.

Applying Corollary 3.8 we obtain the equivalence,

C(G,ϕ) ∼
[
OG(χ0) 0

0 OG(χ1)

]
.

Corollary 3.10. Let G = (G, ϕ, θ, τ) be a Γ-symmetric framework with symbol function Φ = OG ∈
C(Γ̂, B(XV0 , Y E0)). Fix a gain graph for (G, θ) and let Γ0 ⊂ Γ be the finite set of non-zero gains on 
the edges of this gain graph.
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. 
(i) Φ is the operator-valued trigonometric polynomial with,

Φ(χ) = Φ̂(0) +
∑
γ∈Γ0

Φ̂(γ)χ(γ), ∀χ ∈ Γ̂.

(ii) For each γ ∈ Γ0, each [v] ∈ V0 and each [e] ∈ E0,

Φ̂(γ)[e],[v] = C(G,ϕ)ẽ,γṽ ◦ dτ(γ),

where Φ̂(γ)[e],[v] is the ([e], [v])-entry of Φ̂(γ) and C(G, ϕ)ẽ,γṽ is the (ẽ, γṽ)-entry of C(G, ϕ).

Remark 3.11. The orbit matrix OG(1Γ̂) was first introduced in [23] in the context of finite bar-joint frame-
works (G, p) with an abelian symmetry group. There the linear maps ϕv,w are derived from Euclidean 
distance constraints and the orbit matrix is used to analyze fully symmetric motions of the framework in 
Euclidean space Rd. The general orbit matrices OG(χ) were later introduced in [22] and used to derive the 
block-diagonalisation result in Corollary 3.8.

The symbol function Φ for periodic bar-joint frameworks in Rd, again with Euclidean distance constraints, 
was first introduced in [18]. In this setting the symmetry group is Zd and the dual group is the d-torus Td. 
It is proved there that the rigidity matrix for the framework determines a Hilbert space operator R(G, p) :
�2(V, Cd) → �2(E, C) which is unitarily equivalent to the multiplication operator MΦ : L2(Td, Cd|V0|) →
L2(Td, C|E0|).

Theorem 3.7 unifies and generalises these two contexts to frameworks with a general (finite or infinite) 
discrete abelian symmetry group and arbitrary linear edge constraints. See Section 5 for some examples.

4. A generalised RUM spectrum

Let G = (G, ϕ, θ, τ) be a Γ-symmetric framework for X and Y with symbol function Φ ∈ C(Γ̂, B(XV0, Y E0))
Fix χ ∈ Γ̂ and a ∈ XV0 and define z(χ, a) = (zv)v∈V ∈ �∞(V, X) to be the bounded vector with components,

zv = χ(γ)dτ(γ)a[v], for v = βV (γ, [v]).

We refer to z(χ, a) as a χ-symmetric vector in �∞(V, X).
In this section our aim is to prove the following result.

Theorem 4.1. If a ∈ ker Φ(χ) then z(χ, a) ∈ kerC(G, ϕ).

4.1. Key lemmas

Let (uλ)λ∈Λ be an approximate identity for L1(Γ̂) where, for each λ ∈ Λ, uλ is a positive continuous 
function satisfying uλ(η) = uλ(η−1) for all η ∈ Γ̂ and ‖uλ‖1 = 1. It is a standard procedure to show that,

‖uλ ∗ f − f‖p → 0,

for all p ∈ [1, ∞) when f ∈ Lp(Γ̂) and for p = ∞ when f ∈ C(Γ̂). (See [7, Proposition 2.42] e.g.) Note that 
since uλ(η) = uλ(η−1) for all η ∈ Γ̂ it follows that ǔλ = ûλ ∈ C0(Γ).

For each λ ∈ Λ, denote by uλ,a : Γ̂ → XV0 the function η �→ uλ(η)a and define ψλ ∈ C(Γ̂, Y E0)∗ by,

ψλ(g) =
∫

〈Φ(η)(uλ,a(χ−1η)), g(η) 〉 dη, ∀ g ∈ C(Γ̂, Y E0).

Γ̂
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Lemma 4.2. If a ∈ ker Φ(χ) then ψλ
w∗
→ 0.

Proof. Let g ∈ C(Γ̂, Y E0) and define f ∈ C(Γ̂) by,

f(η) = 〈Φ(χη)a, g(χη)〉, ∀ η ∈ Γ̂.

Note that f(1Γ̂) = 〈Φ(χ)a, g(χ)〉 = 0. We have,

ψλ(g) =
∫
Γ̂

uλ(χ−1η)〈Φ(η)a, g(η)〉 dη = (uλ ∗ f)(1Γ̂) → f(1Γ̂) = 0.

Hence ψλ
w∗
→ 0. �

For each λ ∈ Λ, define νλ ∈ �1(Γ, Y E0)∗ by,

νλ(g) =
∑
γ∈Γ

〈 C̃(G,ϕ) ◦ T−1
τ̃ ◦Mδχ(ǔλ,a)(γ), g(γ) 〉, ∀ g ∈ �1(Γ, Y E0).

Lemma 4.3. If a ∈ ker Φ(χ) then νλ
w∗
→ 0.

Proof. For each λ ∈ Λ, define the continuous function φλ ∈ C(Γ̂, Y E0) by,

φλ(η) = Φ(η)(uλ,a(χ−1η)).

By Proposition 2.2 and Theorem 3.6 we obtain,

φ̌λ = C̃(G,ϕ) ◦ T−1
τ̃ ◦Mδχ(ǔλ,a).

Let g ∈ �1(Γ, Y E0). Then ĝ ∈ C(Γ̂, Y E0) and so, using Lemma 4.2, we have,

νλ(g) =
∑
γ∈Γ

〈φ̌λ(γ), g(γ)〉

=
∑
γ∈Γ

〈
∫
Γ̂

η(γ)φλ(η) dη, g(γ) 〉

=
∫
Γ̂

〈φλ(η),
∑
γ∈Γ

η(γ)g(γ)〉 dη

=
∫
Γ̂

〈φλ(η), ĝ(η)〉 dη

= ψλ(ĝ) → 0.

Thus νλ
w∗
→ 0. �

Denote by χ ⊗ a : Γ → XV0 the function γ �→ χ(γ)a and define ρ(χ, a) ∈ �1(Γ, Y E0)∗ by,

ρ(χ, a)(g) =
∑

〈 C̃(G,ϕ) ◦ T−1
τ̃ (χ⊗ a)(γ), g(γ) 〉, ∀ g ∈ �1(Γ, Y E0).
γ∈Γ
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Lemma 4.4. νλ
w∗
→ ρ(χ, a).

Proof. Let g ∈ �1(Γ, Y E0) and let ε > 0. Choose a finite subset K ⊂ Γ such that 
∑
γ /∈K

‖g(γ)‖ < ε. 

By [7, Lemma 4.46], ǔλ → 1 uniformly on compact subsets of Γ and so there exists λ′ ∈ Λ such that 
maxγ∈K |ǔλ(γ) − 1| < ε for all λ ≥ λ′.

Define fλ ∈ �∞(Γ, XV0) by setting fλ = Mδχ(ǔλ,a) − (χ ⊗ a) for each λ ∈ Λ. Since ‖ǔλ‖∞ ≤ ‖uλ‖1 = 1
we have,

‖fλ‖∞ = sup
γ∈Γ

‖χ(γ)(ǔλ(γ) − 1)a‖ ≤ 2‖a‖.

Let 1K denote the characteristic function for K. Then for all λ ≥ λ′ we have,

‖fλ1K‖∞ = max
γ∈K

‖χ(γ)(ǔλ(γ) − 1)a‖ = max
γ∈K

|ǔλ(γ) − 1|‖a‖ < ‖a‖ε.

Note that, by Proposition 3.2, C̃(G, ϕ) ◦T−1
τ̃ ∈ B(�∞(Γ, XV0), �∞(Γ, Y E0)). Moreover, T−1

τ̃ is isometric and 
so for all λ ∈ Λ,

max
γ∈K

‖C̃(G,ϕ) ◦ T−1
τ̃ (fλ)(γ)‖ = ‖C̃(G,ϕ) ◦ T−1

τ̃ (fλ1K)‖∞ ≤ ‖C̃(G,ϕ)‖op‖fλ1K‖∞.

Thus, for all λ ≥ λ′ we have,

|(νλ − ρ(χ, a)) (g)| ≤
∑
γ∈Γ

∣∣〈C̃(G,ϕ) ◦ T−1
τ̃ (fλ)(γ), g(γ)〉

∣∣
≤
∑
γ∈Γ

‖C̃(G,ϕ) ◦ T−1
τ̃ (fλ)(γ)‖ ‖g(γ)‖

≤ ‖C̃(G,ϕ)‖op‖fλ1K‖∞
∑
γ∈K

‖g(γ)‖ + ‖C̃(G,ϕ)‖op‖fλ‖∞
∑
γ /∈K

‖g(γ)‖

≤ ‖C̃(G,ϕ)‖op(‖g‖1 + 2)‖a‖ε

We conclude that νλ(g) → ρ(χ, a)(g). �
4.2. Proof of Theorem 4.1

Proof. By Lemmas 4.3 and 4.4 we have, νλ
w∗
→ 0 and νλ

w∗
→ ρ(χ, a). Since the w∗-topology is Hausdorff it 

follows that ρ(χ, a) = 0. Thus the function fχ,a ∈ �∞(Γ, XV0) given by,

fχ,a(γ) = T−1
τ̃ (χ⊗ a)(γ) = (χ(γ)dτ(γ)a[v])[v]∈V0

lies in the kernel of C̃(G, ϕ). The result now follows since z(χ, a) = S−1
V (fχ,a). �

The Rigid Unit Mode (RUM) spectrum of G is defined as follows,

Ω(G) = {χ ∈ Γ̂ : ker Φ(χ) �= {0}}.

Remark 4.5. The study of rigid unit modes and the RUM spectrum was initiated in [9] as a means of 
understanding phase-transitions and structural stability in minerals. An operator-theoretic formulation 
of these notions was introduced by Owen and Power in the context of periodic bar-joint frameworks in 
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pv1 pv2

pv3 pv4 ⎡
⎢⎢⎢⎢⎢⎢⎣

(v1, 1) (v1, 2) (v2, 1) (v2, 2) (v3, 1) (v3, 2) (v4, 1) (v4, 2)

v1v2 −1 0 1 0 0 0 0 0

v1v4 −1 −1 0 0 0 0 1 1

v2v3 0 0 1 −1 −1 1 0 0

v3v4 0 0 0 0 −1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 4. A bar-joint framework in R2 (left) and rigidity matrix (right).

Euclidean space Rd ([18]). In the above generalisation, characters χ in the dual group Γ̂ can be thought 
of as wave vectors in reciprocal space. The χ-symmetric vectors z(χ, a) which lie in the kernel of C(G, ϕ)
correspond to generalised rigid unit modes for the symmetric framework.

5. Examples from discrete geometry

In this section we present some contrasting examples of symmetric frameworks arising from systems of 
geometric constraints. In each case, the underlying geometric structure is provided by a simple undirected 
graph G, a normed linear space X and an assignment p : V → X of points in X to each vertex in G. 
We consider 1) Euclidean distance constraints for a bar-joint framework with screw axis symmetry, 2) 
a direction-length framework with both periodic and reflectional symmetry and 3) mixed-norm distance 
constraints for a finite bar-joint framework with symmetry group C4h. Each vector in the kernel of the 
associated coboundary matrix C(G, ϕ) represents an infinitesimal (or first-order) flex of the framework. We 
derive the symbol function Φ, compute the RUM spectrum Ω(G) and construct χ-symmetric infinitesimal 
flexes (i.e. generalised rigid unit modes) for these frameworks.

5.1. Bar-joint frameworks in Rd

A bar-joint framework in Rd is a pair (G, p) consisting of a simple undirected graph G = (V, E) and a 
point p = (pv)v∈V ∈ (Rd)V with the property that pv �= pw whenever vw ∈ E. For each pair v, w ∈ V , set 
ϕv,w : Cd → C, x �→ (pv − pw) · x if vw ∈ E and ϕv,w = 0 otherwise. Then the pair (G, ϕ) is a framework 
(for the Hilbert spaces Cd and C) in the sense of Section 3.

Expressing each linear map ϕv,w as a row vector we obtain the rigidity matrix R(G, p) with rows indexed 
by E and columns indexed by V × {1, . . . , d}. The row entries for a given edge vw ∈ E are as follows,

[ (v, 1) · · · (v, d) (w, 1) · · · (w, d)
vw · · · 0 p1

v − p1
w · · · pdv − pdw 0 · · · 0 p1

w − p1
v · · · pdw − pdv 0 · · ·

]
.

We begin with a small example.

Example 5.1. Let G = (V, E) be a four cycle with vertex set V = {v1, v2, v3, v4} and edge set E =
{v1v2, v2v3, v3v4, v4v1}. Let p = (pv)v∈V ∈ (R2)V where,

pv1 = (0, 0), pv2 = (1, 0), pv3 = (0, 1), pv4 = (1, 1).

The bar-joint framework (G, p) is illustrated in Fig. 4 together with an accompanying rigidity matrix R(G, p).
Let θ : Z2 → Aut(G) be the group homomorphism described in Example 3.4. Let τ : Z2 → Isom(R2) be 

the group homomorphism for which τ(1) is the orthogonal reflection in the line y = 1
2 . Then G = (G, ϕ, θ, τ)

is a Z2-symmetric framework. With the notation of Example 3.9, the symbol function for G satisfies,
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v1,0v0,0

v1,1v0,1

v1,2v0,2

v1,3v0,3

v1,4v0,4

v1,−1v0,−1

v1,−2v0,−2

p0,0

(1, 0, 0)

p1,0

(−1, 0, 0)

p0,1

(
√

2
2 ,

√
2

2 , 1)
p1,1

p0,−1

p1,−1

p(1,2)

p0,2

e1,0

e2,0e3,0 0

1 1

[v0,0] [v1,0]

Fig. 5. The double helix framework Gdh (centre), underlying graph (left) and gain graph (right).

Φ(χ0) =
[ ([v1], 1) ([v1], 2) ([v2], 1) ([v2], 2)

[e1] −1 0 1 0
[e2] −1 −1 1 −1

]
,

Φ(χ1) =
[ ([v1], 1) ([v1], 2) ([v2], 1) ([v2], 2)

[e1] −1 0 1 0
[e2] −1 −1 −1 1

]
.

The multiplication operator MΦ takes the form

MΦ : C4 ⊕C4 → C2 ⊕C2,

[
x
y

]
�→
[
Φ(χ0) 0

0 Φ(χ1)

] [
x
y

]
.

In particular, we obtain the block diagonalisation of the rigidity matrix R(G, p) noted in Corollary 3.8,

R(G, p) ∼
[
Φ(χ0) 0

0 Φ(χ1)

]
.

Note that Ω(G) = {χ0, χ1}. The χ0-symmetric infinitesimal flexes derive from fully symmetric motions of 
the framework and take the form,

zv1 =
( a
b

)
, zv2 =

( a
−b

)
, zv3 =

( a
−b

)
, zv4 =

( a
b

)
,

where a, b ∈ C. The χ1-symmetric infinitesimal flexes take the form,

zv1 =
( a
b

)
, zv2 =

( a
2a+b

)
, zv3 =

(−a
b

)
, zv4 =

(
−a

2a+b

)
.

We now present our first main example.

Example 5.2 (Double helix framework). Consider the bar-joint framework (Gdh, p) in R3, illustrated in Fig. 5. 
The graph Gdh has vertex set V = {vj,k : j ∈ {0, 1}, k ∈ Z} and edge set E = {ej,k : j ∈ {1, 2, 3}, k ∈ Z}
where e1,k = v0,kv1,k, e2,k = v0,kv0,k+1 and e3,k = v1,kv1,k+1. The placement p : V → R3 is defined by 
setting,
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pj,k := p(vj,k) =
( (−1)j cos

(
kπ
4
)

(−1)j sin
(
kπ
4
)

k

)
, ∀ j ∈ {0, 1}, k ∈ Z.

Let θ : Z → Aut(Gdh) be the group homomorphism with,

θ(n)(vj,k) = vj,k+n, ∀ j ∈ {0, 1}, k ∈ Z.

The quotient graph for the Z-symmetric graph (Gdh, θ) is the multigraph G0 = (V0, E0), where V0 =
{[v0,0], [v1,0]} is the set of vertex orbits and E0 = {[e1,0], [e2,0], [e3,0]} is the set of edge orbits. Choosing v0,0
and v1,0 as our vertex orbit representatives and fixing an orientation on the edges of G0 we obtain a gain 
graph, such as the one shown in Fig. 5. Let τ : Z → Isom(R3) be the group homomorphism which assigns 
to each n ∈ Z the affine isometry τ(n) with linear part,

dτ(n) =
(

cos
(
nπ
4
)
− sin

(
nπ
4
)

0

sin
(
nπ
4
)

cos
(
nπ
4
)

0
0 0 1

)

and translation vector (0, 0, n) ∈ R3. Note that, for each n ∈ Z, τ(n) is a screw rotation about the z-axis 
by the angle πn4 and satisfies,

τ(n)(pj,k) = p(θ(n)(vj,k)) = p(vj,k+n) = pj,k+n, ∀ j ∈ {0, 1}, k ∈ Z.

Consider the Z-symmetric framework Gdh = (Gdh, ϕ, θ, τ). To formulate the symbol function for Gdh we 
first compute,

p0,0 − p1,0 =
(

2
0
0

)
, p0,0 − p0,1 =

(
1−

√
2

2

−
√

2
2

−1

)
, p1,0 − p1,1 =

( √
2

2 −1
√

2
2
−1

)
.

Recall that the dual group of Z consists of characters of the form χω : Z → T , k �→ ωk, where ω ∈ T . Thus, 
by Theorem 3.7, the symbol function Φ : T → M3×6(C) is given by,

Φ(ω) =

⎡
⎢⎢⎣

([v0,0], 1) ([v0,0], 2) ([v0,0], 3) ([v1,0], 1) ([v1,0], 2) ([v1,0], 3)
([v0,0], [v1,0]) 2 0 0 −2 0 0
([v0,0], [v0,0]) 1 −

√
2

2 (1 + ω) ω −
√

2
2 (1 + ω) ω − 1 0 0 0

([v1,0], [v1,0]) 0 0 0
√

2
2 (1 + ω) − 1

√
2

2 (1 + ω) − ω ω − 1

⎤
⎥⎥⎦

Note that Φ(ω) has a 3-dimensional kernel for all ω ∈ T and so Ω(Gdh) = T .
Calculating now the Fourier transform of Φ, we obtain Φ̂ : Z → M3×6(C) where,

Φ̂(k) =
∫
T

ω−kΦ(ω) dω =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
2 0 0 −2 0 0

1 −
√

2
2 −

√
2

2 −1 0 0 0

0 0 0
√

2
2 − 1

√
2

2 −1

)
, if k = 0

(
0 0 0 0 0 0

−
√

2
2 1 −

√
2

2 1 0 0 0

0 0 0
√

2
2

√
2

2 − 1 1

)
, if k = 1

03×6, otherwise.

Then Φ(ω) = Φ̂(0) + Φ̂(1)ω, as expected by Corollary 3.10.
Given any ω ∈ T , it is easily checked that the vector a = (1, −1, 1, 1, −1, −1)T lies in the kernel of Φ(ω). 

Thus, by Theorem 4.1, the function
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(0,−1) (1,−1)

(1, 1)

p0,0 p1,0

e1,(0,0)

e2,(0,0)

p1,1

(1, 0)

(1, 1)

[v0,0]

Fig. 6. The diamond lattice direction-length framework Gdl (left) and its gain graph (right).

z(χω, a) : V → C3, vj,k �→ ωk

⎛
⎜⎝cos(kπ4 ) + sin(kπ4 )

sin(kπ4 ) − cos(kπ4 )
(−1)j

⎞
⎟⎠ , j ∈ {0, 1}, k ∈ Z,

is a χω-symmetric infinitesimal flex of the double helix framework.

5.2. Direction-length frameworks

A direction-length framework in Rd is a pair (G, p) consisting of a simple undirected graph G = (V, E), a 
partition of the edge set E into two subsets D and L, and a point p = (pv)v∈V ∈ (Rd)V with the property 
that pv �= pw whenever vw ∈ E. For each pair v, w ∈ V , set ϕv,w : Cd → Cd−1 to be,

(i) a linear map with rank d − 1 and kernel spanned by pv − pw, if vw ∈ D,
(ii) the linear map x �→ ((pv − pw) · x)Id−1, if vw ∈ L, and,
(iii) 0, if vw /∈ E.

Note that the pair (G, ϕ) is a framework (for the Hilbert spaces Cd and Cd−1) in the sense of Section 3. The 
edges in D represent direction constraints and the edges in L represent length constraints. Mixed constraint 
systems of this type arise naturally in CAD and network localisation for example (see [24,11]).

Example 5.3 (Diamond lattice framework). Consider the diamond lattice direction-length framework illus-
trated in Fig. 6. The graph Gdl has vertex set V = {vn,j : n ∈ Z, j ∈ {0, 1}} and edge set E = D∪L where 
D = {vn,jvn+1,j : n ∈ Z, j ∈ {0, 1}} and L = {vn,0vn+1,1, vn,0vn−1,1 : n ∈ Z, j ∈ {0, 1}}. The placement p
of Gdl in R2 satisfies pn,j := p(vn,j) = (n, (−1)j+1) for all n ∈ Z and j ∈ Z2.

Given v, w ∈ V , define ϕv,w : C2 → C by setting,

(i) ϕv,w(x1, x2) = x2 if vw ∈ D is an edge with v = vn,0 and w = vn+1,0, or, v = vn+1,1 and w = vn,1,
(ii) ϕv,w(x1, x2) = −x2 if vw ∈ D is an edge with v = vn,1 and w = vn+1,1, or, v = vn+1,0 and w = vn,0,
(iii) ϕv,w(x) = (pv − pw) · x if vw ∈ L, and,
(iv) ϕv,w = 0 if vw /∈ E.

Then (G, ϕ) is a framework (for the Hilbert spaces C2 and C) in the sense of Section 3.
Define a group homomorphism θ : Z × Z2 → Aut(Gdl) with,

θ(m, j)(vn,k) = vm+n,j+k, m, n ∈ Z, j, k ∈ Z2.

Then the pair (Gdl, θ) is a Z ×Z2-symmetric graph. The accompanying gain graph G0 = (V0, E0) has vertex 
set V0 = {[v0,0]} and edge set E0 = {[e1,(0,0)], [e2,(0,0)]}, where e1,(0,0) = v0,0v1,0 and e2,(0,0) = v0,0v1,1.
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Define a group homomorphism τ : Z × Z2 → Isom(R2) with linear part,

dτ(m, j) =
(

1 0
0 (−1)j

)
, m ∈ Z, j ∈ Z2,

and translation vector 
( 1

0

)
. Note that θ and τ satisfy,

ϕ(m,j)v,(m,j)w = ϕv,w ◦ τ(−m,−j), ∀m ∈ Z, j ∈ Z2, v, w ∈ V.

Thus Gdl = (Gdl, ϕ, θ, τ) is a Z × Z2-symmetric framework.
Recall that the dual group of Z ×Z2 consists of characters of the form χω,ι : Z ×Z2 → T , (n, j) �→ ωnιj , 

where ω ∈ T and ι ∈ Ẑ2 = {−1, 1}. Applying again Theorem 3.7, we obtain the symbol function,

Φ(ω, ι) =
[ ([v0,0], 1) ([v0,0], 2)[

e1,(0,0)
]

0 1 − ω[
e2,(0,0)

]
−1 + ωι −2(1 + ωι)

]

where ω ∈ T and ι ∈ Ẑ2. Note that Ω(Gdl) = {(1, 1), (1, −1), (−1, −1)}. We now apply Theorem 4.1 to 
construct the associated χ-symmetric infinitesimal flexes of Gdl.

• Let ω = 1 and ι = 1. Check that a :=
( 1

0

)
∈ ker Φ(1, 1). Hence we obtain a χ1,1-symmetric infinitesimal 

flex z(χ1,1, a) = (zv)v∈V where,

zvm,j
= dτ(m, j)a =

( 1
0

)
, m ∈ Z, j ∈ Z2.

Note that this is a trivial infinitesimal flex of Gdl describing translation along the x-axis.
• Let ω = 1 and ι = −1. Check that a :=

( 0
1

)
∈ ker Φ(1, −1). Hence we obtain a χ1,−1-symmetric 

infinitesimal flex z(χ1,−1, a) = (zv)v∈V where,

zvm,j
= (−1)jdτ(m, j)a =

( 0
1

)
, m ∈ Z, j ∈ Z2.

Note that this is a trivial infinitesimal flex of Gdl describing translation along the y-axis.
• Let ω = −1 and ι = −1. Check that a :=

( 1
0

)
∈ ker Φ(−1, −1). Hence we obtain a χ−1,−1-symmetric 

infinitesimal flex z(χ−1,−1, a) = (zv)v∈V where,

zvm,j
= (−1)m(−1)jdτ(m, j)a =

(
(−1)m+j

0

)
, m ∈ Z, j ∈ Z2.

Note that this is a non-trivial infinitesimal flex of Gdl.

5.3. Norm distance constraints

Let X be a finite dimensional real normed linear space with unit ball B. There exists a unique ellipsoid in 
X of minimal volume which contains B, known as the Löwner ellipsoid for B (see [25, p. 82]). The Löwner 
ellipsoid is the unit ball for a norm which is derived from an inner product on X. Let X ′ denote the real 
linear space X together with this inner product and let X ′

C denote the complexification of this real Hilbert 
space.

A bar-joint framework in X is a pair (G, p) consisting of a simple undirected graph G = (V, E) and a 
point p = (pv)v∈V ∈ XV with the property that pv −pw is a non-zero smooth point in X whenever vw ∈ E. 
For each pair v, w ∈ V , set ϕv,w : X → R where,
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Fig. 7. The box kite bar-joint framework Gbk (centre), underlying graph (left) and gain graph (right).

ϕv,w(x) = lim
t→0

1
t

(‖pv − pw + tx‖ − ‖pv − pw‖) , (2)

if vw ∈ E and ϕv,w = 0 if vw /∈ E. Each linear map ϕv,w extends in the natural way to a linear map from 
X ′

C to C. Thus the pair (G, ϕ) is a framework (for the Hilbert spaces X ′
C and C) in the sense of Section 3.

Note that if θ : Γ → Aut(G) and τ : Γ → Isom(X) are group homomorphisms which satisfy pγv = τ(γ)pv, 
for all v ∈ V and all γ ∈ Γ, then it is straightforward to check that,

ϕγv,γw = ϕv,w ◦ τ(−γ), ∀ v, w ∈ V, γ ∈ Γ.

The isometry group Isom(X) is a subgroup of Isom(X ′) (see [25, Corollary 3.3.4]) and each isometry of X ′

has a natural extension to an isometry of X ′
C. Thus, regarding τ as a homomorphism into Isom(X ′

C), we 
see that G = (G, ϕ, θ, τ) is a Γ-symmetric framework in the sense of Section 3.

Example 5.4 (�32,q distance constraints). Let �32,q, where q ∈ (1, ∞), denote the vector space R3 equipped 
with the smooth mixed (2, q)-norm in R3 given by,

‖(x, y, z)‖2,q = ((x2 + y2)
q
2 + |z|q) 1

q .

Infinitesimal rigidity for non-symmetric bar-joint frameworks in these spaces has recently been studied in 
[3]. In particular, it is shown there that the Lowner ellipsoid for the unit ball in �32,q is the Euclidean unit 
ball in R3. Thus the associated complex Hilbert space is C3.

Consider the box kite bar-joint framework in �32,q, illustrated in Fig. 7. The underlying graph Gbk has 
vertex set V = {vn,j : n ∈ Z4, j ∈ Z2 } and edge set E = {vn,0vn+1,1, vn,0vn−1,1, vn,jvn+1,j : n ∈ Z4, j ∈
Z2 }. The placement p : V → R3 satisfies, for j ∈ {0, 1},

p0,j :=

⎛
⎝ −2

−2
(−1)j+1

⎞
⎠ , p1,j :=

⎛
⎝ 2

−2
(−1)j+1

⎞
⎠ , p2,j :=

⎛
⎝ 2

2
(−1)j+1

⎞
⎠ , p3,j :=

⎛
⎝ −2

2
(−1)j+1

⎞
⎠ .

Define a group homomorphism θ : Z4 × Z2 → Aut(Gbk) with,

θ(m, j)(vn,k) = vm+n,j+k, ∀m,n ∈ Z4, j, k ∈ Z2.

Then the pair (Gbk, θ) is a Z4×Z2-symmetric graph. The accompanying gain graph G0 = (V0, E0) has vertex 
set V0 = {[v0,0]} and edge set E0 = {[e1,(0,0)], [e2,(0,0)]}, where e1,(0,0) = v0,0v1,0 and e2,(0,0) = v0,0v1,1.
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Define a group homomorphism τ : Z4 × Z2 → Isom(�32,q) with,

τ(m, j) = dτ(m, j) =
( cos(mπ/2) − sin(mπ/2) 0

sin(mπ/2) cos(mπ/2) 0

0 0 (−1)j

)
, ∀m ∈ Z4, j ∈ Z2.

Note that,

pvm+n,j+k
= τ(m, j)pn,k, ∀m,n ∈ Z4, j, k ∈ Z2.

Thus the tuple Gbk = (Gbk, ϕ, θ, τ) is a Z4 × Z2-symmetric framework (for the Hilbert spaces (�32,q)′C and 
C).

Let now vw ∈ E. Write pv − pw = (x, y, z) ∈ �32,q and d =
√
x2 + y2. Using the formula (2) we calculate 

directly,

ϕv,w(a, b, c) = (dq + |z|q) 1
q−1(dq−2(xa + yb) + sgn(z)|z|q−1c), ∀ (a, b, c) ∈ �32,q.

Hence the functional ϕv,w can be identified with the row vector

ϕv,w = (dq + |z|q) 1
q−1dq−2

[
x y sgn(z)|z|q−1

dq−2

]
.

The non-zero entries of the associated coboundary matrix are given by,

ϕv0,0,v1,0 = [−1 0 0] , ϕv0,0,v1,1 = α
[
−2q−1 0 −1

]
,

ϕv0,0,v3,0 = [0 −1 0] , ϕv0,0,v3,1 = α
[
0 −2q−1 −1

]
,

where α = (2q + 1)
1
q−1.

Recall that the dual group of Z4×Z2 consists of characters of the form χη,ι : Z4×Z2 → T , (m, j) �→ ηmιj , 
where η ∈ Ẑ4 = {1, i, −1, −i} and ι ∈ Ẑ2 = {−1, 1}. By Theorem 3.7, the symbol function Φ : Ẑ4 × Ẑ2 →
M2×3(C) of Gbk takes the form,

Φ(η, ι) =
[ ([v0,0], 1) ([v0,0], 2) ([v0,0], 3)[

e1,(0,0)
]

−1 −η 0[
e2,(0,0)

]
−2q−1α −2q−1αηι −α(1 + ηι)

]
.

Evidently we have RUM spectrum Ω(Gbk) = Ẑ4 × Ẑ2.
First we will construct a χ1,1-symmetric infinitesimal flex of Gbk. Note that such flexes represent a fully 

symmetric motion of the bar-joint framework which preserves the edge-lengths induced by the (2, q)-norm. 

The kernel of Φ(1, 1) is spanned by a =
(

1
−1
0

)
. Thus, by Theorem 4.1, z(χ1,1, a) is a fully symmetric 

χ1,1-symmetric infinitesimal flex of Gbk where, for j ∈ Z2,

zv0,j =
(

1
−1
0

)
, zv1,j =

(
1
1
0

)
, zv2,j =

(
−1
1
0

)
, zv3,j =

(
−1
−1
0

)
.

Note that the above fully symmetric infinitesimal flex is independent of q. By way of contrast we now 
construct a χ−1,−1-symmetric infinitesimal flex for Gbk which varies with q. Note that ker Φ(−1, −1) is 

spanned by a =
(

1
1

−2q−1

)
. By Theorem 4.1, z(χ−1,−1, a) is a χ−1,−1-symmetric infinitesimal flex of Gbk

where, for j ∈ Z2,
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zv0,j =
(

1
1

(−1)j+12q−1

)
, zv1,j =

(
1
−1

(−1)j2q−1

)
, zv2,j =

(
−1
−1

(−1)j+12q−1

)
, zv3,j =

(
−1
1

(−1)j2q−1

)
.
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