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Abstract

We use a new coloured multi-graph constructive method to prove that if the
edge-set of a graph G = (V,E) has a partition into two spanning trees T1 and T2

then there is a map p : V → R2, p(v) = (p(v)1, p(v)2), such that |p(u)i − p(v)i| >
|p(u)3−i − p(v)3−i| for every edge uv in Ti (i = 1, 2). As a consequence, we solve an
open problem on the realisability of minimally rigid bar-joint frameworks in the `1

or `∞-plane. We also show how to adapt this technique to incorporate symmetry
and indicate several related open problems on rigidity, redundant rigidity and forced
symmetric rigidity in normed spaces.
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1 Introduction

A simple graph G = (V,E) with vertices embedded generically in R2 inherits a natural
edge-labelling κ : E → {1, 2} whereby an edge (represented by a straight line segment
between its embedded vertices) is labelled either 1 or 2 depending on whether the slope
m of its affine span satisfies |m| < 1 or |m| > 1. Simple examples show that not all
edge-labellings κ : E → {1, 2} are realisable in this way. Motivated by problems in
graph rigidity under `p distance constraints (see [8, 9, 10] for example), we are interested
in the realisability of d-tree decompositions in Rd (see Section 2 for the corresponding
notion of realisability when d > 2). A d-tree decomposition arises from an edge-labelling
κ : E → {1, 2, . . . , d} when the edge sets κ−1(1), . . . , κ−1(d) are spanning trees in G.
In general, multi-graphs which admit a d-tree decomposition are characterised by the
conditions |E| = d(|V | − 1) and |E(H)| 6 d(|V (H)| − 1) for each subgraph H (see Nash-
Williams [12] and Tutte [16]) and such graphs are said to be (d, d)-tight. Constructive
characterisations for (d, d)-tight graphs and connections to graph rigidity under `2 distance
constraints are discussed in Tay [14], Frank and Szegö [1] and in Graver, Servatius and
Servatius [2, §4.9], for example.

In recent work ([10]) it has been observed that while rigidity properties of graphs under
`1 or `∞ distance constraints can give rise to special classes of graph decompositions, such
as the d-tree decompositions considered here, it is by no means clear as to whether a
given graph decomposition always admits a geometric realisation with the specified rigidity
property. These realisation problems arise in both symmetric and non-symmetric contexts
and are important for several reasons: firstly, they can lead to complete combinatorial
characterisations of rigidity; secondly, they provide a method of constructing examples;
and thirdly, they allow the existence of geometric frameworks with prescribed rigidity
properties to be established by purely combinatorial methods.

In this article we present a constructive method for realising coloured 2-tree decompo-
sitions in the plane, thereby solving the (non-symmetric) realisation problem in dimension
2. The method consists of two parts: a multi-graph construction scheme for (d, d)-tight
graphs which tracks the evolution of d edge-disjoint spanning trees, and in the case d = 2,
a method of constructing geometric placements for these multi-graphs which accommo-
dates parallel edges. While it is known that (d, d)-tight graphs are constructible in terms
of multi-graphs, the particular role of spanning trees in these constructions is given promi-
nence here. Moreover, the method of assigning geometric placements to multi-graphs used
here is a new technique which can be adapted for other contexts.

The graph construction is presented in Section 3 and the geometric realisations for
the `∞-plane are contained in Section 4. In Section 5, we illustrate the versatility of the
technique by adapting it to symmetric 2-tree decompositions with no fixed edges, thereby
solving the realisation problem in this symmetric context also. The corresponding results
for the `1-plane may be obtained by applying an isometry between the spaces. In the
concluding section we state some related open problems and indicate connections to other
areas of graph rigidity.

This work was initiated at the workshop “Advances in Combinatorial and Geometric
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Rigidity” which took place at the Banff International Research Station from 12th-17th
July 2015.

2 Preliminaries

In this section we introduce terminology, state the main results and provide some back-
ground.

2.1 Graph Theory

Let G = (V,E) be a finite, loop-free multi-graph. Let X ⊆ V be a set of vertices.
The neighbourhood of X in G, NG(X), is the set of all vertices in V − X which share
an edge with some x ∈ X. When X = {x} we refer to NG(x) instead of NG({x}).
The subgraph of G induced by X is denoted G[X] and has vertex set X and edge set
EG(X) = {uv ∈ E : u, v ∈ X}. We let iG(X) = |EG(X)|. When the original graph G
is apparent from the context, we omit the subscripts and refer simply to N(X), E(X)
and i(X). For F ⊆ E, the subgraph of G induced by F is denoted G[F ] and has vertex
set VG(F ) = {v ∈ V : uv ∈ F for some u ∈ V }, and edge set F . We say that the edge
set F spans G when VG(F ) = V . Once more, when the graph is apparent, we omit the
subscripts. For a vertex v ∈ V , the degree of v is the number of edges incident to v, and
is denoted by dG(v) or d(v). Note that for multi-graphs dG(v) > |NG(v)|. The minimum
degree of G is the minimum of d(v) for all v ∈ V and is denoted δ(G).

A d-tree decomposition is a tuple G = (G;T1, . . . , Td) where G is a multi-graph which
is the edge-disjoint union of spanning trees T1, . . . , Td. Note that since G is a multi-graph,
it may have multiple edges between a given pair of vertices u, v ∈ V (G). As such, we say
two spanning trees Ti and Tj of G are edge-disjoint if whenever they both contain a uv-
edge, these edges are distinct in G. Formally, we regard the tuple K1 = (K1;T1, . . . , Td),
where K1 is the graph with a single vertex and no edge, and the edge sets of T1, . . . , Td are
empty, as a d-tree decomposition. We denote by Gd the set of all d-tree decompositions.
Note that if a multi-graph G admits a d-tree decomposition then it is necessarily loop-free
and contains at most d copies of any edge.

2.2 Realisations

Let G = (V,E) be a finite simple graph. A placement of G in Rd is an injective map
p : V → Rd. The pair (G, p) is referred to as a (bar-joint) framework in Rd. We let
p(v) = (p(v)1, . . . , p(v)d) for v ∈ V . Consider a norm on Rd of the form,

‖x‖ = max
16i6d

|x · ẽi|, (1)

where ẽ1, . . . , ẽd is a basis for Rd. For each edge uv ∈ E, the pair {p(u), p(v)} is said to
be well-positioned in (Rd, ‖ · ‖) if there exists a unique k ∈ {1, . . . , d} such that

‖p(u)− p(v)‖ = |(p(u)− p(v)) · ẽk|.
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Figure 1: Left: Realisations of two distinct 2-tree decompositions for the wheel graph W5.
Right: A well-positioned placement of W5 which is not a realisation of a 2-tree decomposition
and a placement of W5 which is not well-positioned.

The framework (G, p) is said to be well-positioned if {p(u), p(v)} is well-positioned for
every edge uv ∈ E.

Each well-positioned framework (G, p) in (Rd, ‖·‖) inherits an edge-labelling κp : E →
{1, . . . , d}, referred to as the framework colouring, where for each edge uv ∈ E,

κp(uv) = {k} if and only if ‖p(u)− p(v)‖ = |(p(u)− p(v)) · ẽk|.

The set of edges of colour k, κ−1p (k), induces the subgraph G[κ−1p (k)] which is referred
to as an induced monochrome subgraph of G. A realisation in (Rd, ‖ · ‖) for a d-tree
decomposition G = (G;T1, . . . , Td), where G is a simple graph, is a framework (G, p) in
Rd with the property that T1, . . . , Td are the induced monochrome subgraphs of G.

To simplify the presentation that follows we will consider only the specific case of the
`∞ norm on Rd. Here we take (ei)

d
i=1 to be the usual basis for Rd and write ‖x‖∞ =

max16i6d |x · ei| for each x ∈ Rd. The corresponding statements for other norms of the
form (1) are obtained by applying the linear isometry (Rd, ‖ · ‖∞)→ (Rd, ‖ · ‖), ei 7→ ẽi

‖ẽi‖ .

In particular, the analogous statements for the `1-plane are obtained by applying the
linear isometry (R2, ‖ · ‖∞)→ (R2, ‖ · ‖1), (x, y) 7→ (x−y

2
, x+y

2
).

Example 1. Figure 1 illustrates four placements of the wheel graph W5 in the `∞-plane
together with the induced framework colourings. Note that W5 admits three distinct 2-
tree decompositions (up to graph isomorphism). Two of these are realised by the first
two placements pictured on the left of Figure 1. The third placement in Figure 1 is
well-positioned, as each edge affinely spans a line of slope m with |m| 6= 1, but is not
a realisation for a 2-tree decomposition of W5. The rightmost placement is not well-
positioned as the edges incident to v0 affinely span lines of slope ±1.

2.3 Graph rigidity

Motivation for considering realisation problems of this type comes from graph rigidity in
normed spaces. Consider again a simple graph G and a norm on Rd of the form (1). A
framework (G, p) in Rd is (locally) rigid with respect to this norm if every edge-length
preserving continuous motion of the vertices is obtained from an isometric motion of the
space. The notion of a well-positioned framework (G, p), introduced above, is equivalent
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to the condition that the rigidity map,

fG : (Rd)V → RE, (x(v))v∈V 7→ (‖x(v)− x(w)‖)vw∈E,

is differentiable at p = (p(v))v∈V . Note that this condition is redundant if the norm
under consideration is a smooth norm, since the rigidity map for such norms will always
be differentiable. For norms of type (1), the rigidity map fG fails to be differentiable at
p = (p(v))v∈V whenever there is an edge uv ∈ E and distinct k, l ∈ {1, . . . , d} such that,

‖p(u)− p(v)‖ = |(p(u)− p(v)) · ẽk| = |(p(u)− p(v)) · ẽl|.

If (G, p) is well-positioned, then vectors which lie in the kernel of the differential
dfG(p) are referred to as infinitesimal flexes of (G, p). This kernel will always contain
as a subspace the so-called trivial infinitesimal flexes of (G, p) which are derived from
isometries of the normed space. For norms on Rd of the form (1), the trivial infinitesimal
flexes are precisely the translational vectors of the form (a, . . . , a) ∈ (Rd)V , where a ∈ Rd.
Moreover, it can be shown (see [6]) that local rigidity is equivalent to the condition that
(G, p) has no non-trivial infinitesimal flexes. This latter property is known as infinitesimal
rigidity. For this reason, we will simply refer to a well-positioned framework as being
rigid whenever it is locally (or equivalently, infinitesimally) rigid. A framework (G, p)
is minimally rigid (or isostatic) if it is rigid and removing any edge from G results in a
framework which is not rigid.

Consider an `q norm on Rd, where q ∈ [1,∞] and q 6= 2. It is shown in [8] that a
necessary condition for a (well-positioned) framework (G, p) on a simple graph G to be
isostatic with respect to `q is that G is (d, d)-tight. It is also shown that in the case d = 2,
a converse statement holds: every (2, 2)-tight simple graph G admits a (well-positioned)
framework (G, p) in the plane which is isostatic for the `q norm. It is conjectured that
this equivalence extends to d > 3. In the case of `∞, the spanning tree characterisation
of (d, d)-tight graphs obtained by Nash-Williams [12] and Tutte [16], together with the
following result, support this conjecture and provide the link to the realisation problems
considered in this article.

Theorem 2.1. [8, Propositions 4.3 & 4.4] Let G be a simple graph and let (G, p) be a
well-positioned framework in (Rd, ‖ · ‖∞). The following statements are equivalent:

(a) (G, p) is minimally rigid;

(b) the monochrome subgraphs induced by the framework colouring κp are spanning
trees in G.

To summarise, if G is a simple graph which is (d, d)-tight then it admits a d-tree
decomposition and so, by the above theorem, to show that G admits a well-positioned
isostatic framework in (Rd, ‖ · ‖∞) it is sufficient to prove that some d-tree decomposition
of G can be realised in Rd.

Example 2. With reference to Figure 1, note that we may regard the first three of these
figures as well-positioned bar-joint frameworks in the `∞-plane. By Theorem 2.1, the
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first two frameworks are minimally rigid while the third is flexible. A flex of the third
framework is obtained, for example, by fixing the vertices v1, v2 and applying a horizontal
translation to the vertices v0, v3, v4.

2.4 Inductive constructions

Nash-Williams [12] and Tutte [16] independently characterised the multi-graphs which
admit a d-tree decomposition as those which are (d, d)-tight:

Theorem 2.2. A multi-graph G = (V,E) is expressible as an edge-disjoint union of d
spanning trees if and only if

(a) |E| = d|V | − d, and

(b) i(X) 6 d|X| − d for all ∅ 6= X ⊆ V .

Let d > 2 and 0 6 j 6 d − 1. A d-dimensional j-extension of a graph G = (V,E)
forms a new graph G′ by first deleting some set of edges F from G, with |F | = j, and then
appending a new vertex v to G, incident to d + j new edges, such that mult(NG′(v)) ⊇
mult(VG(F )). Here mult(NG′(v)) denotes the multiset of vertices in NG′(v) in which
each vertex w is repeated according to the number of parallel edges vw in G′. Similarly,
mult(VG(F )) denotes the multiset of vertices in VG(F ) in which each vertex w is repeated
according to the number of edges in F which are incident to w.

The inverse of a d-dimensional j-extension is a d-dimensional j-reduction which, given
a graph G′, forms G by deleting some vertex v of degree d+j and then adding a set F of j
edges between the vertices in NG′(v) such that mult(NG′(v)) ⊇ mult(VG(F )). Extensions
and reductions of this type were first introduced by Henneberg [3], and so are also known
as Henneberg moves and inverse Henneberg moves respectively.

During his work on the rigidity of body-bar frameworks, Tay [14] found the following
inductive construction of (d, d)-tight graphs:

Theorem 2.3. A multi-graph G = (V,E) is (d, d)-tight if and only if there exists a sequence
of graphs

K1 = G(1) → G(2) → · · · → G(n) = G

such that for all 2 6 i 6 n, G(i) is obtained from G(i−1) by a d-dimensional j-extension,
for some 0 6 j 6 d− 1.

Tay later used the inductive construction in Theorem 2.3 to obtain a new proof of
Theorem 2.2, see [15]. Combining Theorems 2.2 and 2.3 gives the following result, which
is the starting point of this paper:

Theorem 2.4. A multi-graph G = (V,E) is the edge-disjoint union of d spanning trees if
and only if there exists a sequence of graphs

K1 = G(1) → G(2) → · · · → G(n) = G

such that for all 2 6 i 6 n, G(i) is obtained from G(i−1) by a d-dimensional j-extension,
for some 0 6 j 6 d− 1.
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3 Inductive construction for d-tree decompositions

Given a d-tree decomposition G = (G;T1, . . . , Td), we wish to adapt the construction in
Theorem 2.4 so that we simultaneously construct each of the monochrome spanning trees
T1, T2, . . . , Td. To do this, we consider an alternative move to the above d-dimensional
j-extension, which we instead call a d-tree j-extension. This modification is intuitive, how-
ever to the best of our knowledge it has not appeared in the literature. For completeness,
we prove it here. We first consider a single tree.

Let j > 0, G be a graph and T ⊆ G be a tree with |E(T )| = j. A tree j-extension of
G on T forms a new graph G′ by first deleting E(T ), and then appending a new vertex
v to G, incident to j + 1 new edges, such that NG′(v) = VG(T ). The inverse of a tree
j-extension is a tree j-reduction.

Lemma 3.1. Let T = (V,E) be a simple graph, and let S = (U, F ) be a subgraph of T
which is a tree. Suppose T ′ = (V ′, E ′) is formed from T by a tree |F |-extension on F .
Then T is a tree if and only if T ′ is a tree.

Proof. By the definition of a tree |F |-extension, |E| = |E ′| − 1 and |V | = |V ′| − 1. It
follows that |E ′| = |V ′| − 1 if and only if |E| = |V | − 1. So to prove that T is a tree if and
only if T ′ is a tree, it remains to note that T is connected if and only if T ′ is connected.

It is easy to see that d-tree decompositions satisfy the following fact.

Lemma 3.2. Let G be a multi-graph, with |V (G)| > 2, which admits a d-tree decomposi-
tion for some d > 1. Then d 6 δ(G) 6 2d− 1.

This lemma implies that the following definition of a d-tree j-extension, need only
consider 0 6 j 6 d− 1.

Definition 3.3. A d-tree decomposition G ′ = (G′;T ′1, . . . , T
′
d) is said to be obtained from

a d-tree decomposition G = (G;T1, . . . , Td) by a d-tree j-extension if

(a) 0 6 j 6 d− 1,

(b) G′ is obtained from G by deleting j edges and appending a vertex incident to d+ j
edges, and,

(c) for each 1 6 i 6 d, T ′i is obtained from Ti by a tree ki-extension, for some 0 6 ki 6
d− 1.

Note that
∑d

i=1 ki = j, and that Lemma 3.1 ensures that G ′ is indeed a d-tree decompo-
sition whenever G is.

Proposition 3.4. Let G ′ ∈ Gd be a d-tree decomposition with G ′ 6= K1. Then there exists
a d-tree decomposition G ∈ Gd such that G ′ is a d-tree j-extension of G.
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Proof. Let G ′ = (G′;T ′1, . . . , T
′
d) where G′ = (V ′, E ′) and T ′i = (V ′, E ′i) for each i =

1, . . . , d. By Lemma 3.2, there exists v ∈ V ′ such that d 6 dG′(v) 6 2d− 1. For each tree
T ′i , perform a tree |Fi|-reduction at v which forms the graph Ti = (V ′− v, Ei) by deleting
v and adding a set of edges Fi between the vertices in NT ′

i
(v) such that (NT ′

i
(v), Fi) is a

tree.
Let G = (V ′ − v, E1 ∪ · · · ∪ Ed). By Lemma 3.1, T1, . . . , Td are trees and so G =

(G;T1, . . . , Td) is a d-tree decomposition. In order for the move which formed G from G ′
to be a d-tree j-reduction, it only remains to show that 0 6 |Fi| 6 d− 1 for all 1 6 i 6 d.

Since T ′1, T
′
2, . . . , T

′
d are spanning trees of G′, we know dT ′

i
(v) > 1 for all 1 6 i 6 d.

Further, by our choice of v,

d∑
i=1

dT ′
i
(v) = dG′(v) 6 2d− 1.

Hence 1 6 dT ′
i
(v) 6 d for all 1 6 i 6 d. By the definition of a tree |Fi|-reduction,

|Fi| = dT ′
i
(v)− 1. And so 0 6 |Fi| 6 d− 1, as required.

This gives the sought alternative to Tay’s construction.

Corollary 3.5. Let G = (G;T1, . . . , Td) be a d-tree decomposition. Then, there exists a
sequence of d-tree decompositions

K1 = G(1) → G(2) → · · · → G(n) = G

such that for all 2 6 i 6 n, G(i) is obtained from G(i−1) by a d-tree j-extension, for some
0 6 j 6 d− 1.

Note that both d-dimensional j-extensions and d-tree j-extensions are moves which
delete j edges and append a vertex of degree d + j. In general, these two graph moves
are distinct. However, when j ∈ {0, 1}, they coincide.

4 Realisations for 2-tree decompositions

In this section, we apply our inductive construction from Corollary 3.5 to show that every
2-tree decomposition has a plane realisation. To do this, we first extend the definitions of
a well-positioned framework (G, p) in Rd and an induced framework colouring κp, which
were given in Section 2.2, to accommodate multi-graphs.

Let G = (V,E) be a multi-graph with no loops and let p : V → Rd be an injective
map. As before we refer to the pair (G, p) as a framework in Rd. Suppose a pair of
vertices u, v ∈ V are joined by exactly t edges, where 1 6 t 6 d. The pair {p(u), p(v)} is
said to be well-positioned if there exist exactly t distinct elements j1, . . . , jt ∈ {1, . . . , d}
such that

‖p(u)− p(v)‖∞ = |(p(u)− p(v)) · ejk |
for k = 1, 2, . . . , t. We refer to j1, . . . , jt as the framework colours for the pair {p(u), p(v)}.
The framework (G, p), on the multi-graph G, is said to be well-positioned if, for every edge
uv ∈ E(G), the pair {p(u), p(v)} is well-positioned.
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When a framework (G, p) is well-positioned, the multi-graph G inherits an edge-
labelling κp : E(G) → {1, 2, . . . , d} whereby each of the t edges connecting a pair of
vertices u and v is assigned one of the distinct framework colours j1, . . . , jt for the pair
{p(u), p(v)}. The edge-labelling κp is referred to as a framework colouring for (G, p).
Note that this framework colouring is unique up to permutation of colours between paral-
lel edges. Such permutations will not create any problems in what follows. The subgraph
G[κ−1p (k)] spanned by edges with framework colour k is again referred to as a monochrome
subgraph of G.

Given a d-tree decomposition G = (G;T1, . . . , Td) of a multi-graph G, a realisation of G
is a framework (G, p) in Rd with the property that T1, . . . , Td are the induced monochrome
subgraphs of G, for some choice of framework colouring κp. Note that by relabelling
T1, . . . , Td we may assume, without loss of generality, that for i = 1, . . . , d, edges uv in Ti
satisfy,

‖p(u)− p(v)‖∞ = |(p(u)− p(v)) · ei|.

Proposition 4.1. Let G = (G;T1, T2) be a 2-tree decomposition and suppose that G ′ =
(G′;T ′1, T

′
2) is a 2-tree decomposition which is obtained by applying a 2-tree 0-extension

to G.
If G has a realisation p in the plane then G ′ has a realisation p′ in the plane with the

property that p′(w) = p(w) for all w ∈ V (G).

Proof. Suppose the 2-dimensional 0-reduction which forms G from G′ deletes the vertex
v. By the definition of a 2-dimensional 0-reduction, dG′(v) = 2, and G is formed from
G′ by deleting v and the two edges incident to v. Since T ′1 and T ′2 are both spanning
trees of G′, this implies that v is a leaf node of both T ′1 and T ′2. Hence Ti = T ′i − v for
i ∈ {1, 2}. Let NG′(v) = {x, y} where x and y may or may not be distinct. Without
loss of generality, suppose vx ∈ E(T ′1) and vy ∈ E(T ′2). Since G = G′ − v, we know that
(G′−v, p) is well-positioned. So let p′(w) = p(w) for all w ∈ V (G). For (G′, p′) to be well-
positioned, it only remains to find a position for p′(v) such that the pairs {p′(v), p′(x)}
and {p′(v), p′(y)} are well-positioned.

If x 6= y then p′(x) 6= p′(y). If we place v within a sufficiently small distance of
the intersection of the lines p′(x) + λ(1, 0) and p′(y) + µ(0, 1), then {p′(v), p′(x)} and
{p′(v), p′(y)} will have framework colours 1 and 2 respectively.

Now suppose x = y. Then v is met by a double-edge; one edge in T ′1 and the other in
T ′2. To satisfy the constraints induced by this colouring, we must place p′(v) such that

‖p′(v)− p′(x)‖∞ = |p′(v)1 − p′(x)1| = |p′(v)2 − p′(x)2|.

If we place p′(v) at any point of the lines p′(x) + λ(1, 1) or p′(x) + λ(1,−1), then we will
satisfy these constraints, and, since vx is a double-edge, the pair {p′(v), p′(x)} will be
well-positioned.

In both cases we can choose p′(v) so that it is not coincident with another vertex of
G′. Moreover, (G′, p′) is well-positioned, and the induced monochrome subgraphs are T ′1
and T ′2.
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To complete the inductive construction we require a geometric method of realising
2-tree 1-extensions which accommodates parallel edges.

Proposition 4.2. Let G = (G;T1, T2) be a 2-tree decomposition and suppose that G ′ =
(G′;T ′1, T

′
2) is a 2-tree decomposition which is obtained by applying a 2-tree 1-extension

to G.
If G, and every 2-tree decomposition with fewer vertices than G, has a realisation p in

the plane then G ′ has a realisation p′ in the plane.

Proof. Suppose the 2-dimensional 1-reduction which forms G from G′ deletes the vertex
v. By the definition of a 2-dimensional 1-reduction, dG′(v) = 3, and G is formed from G′

by deleting v and all three edges incident to v, before adding a single edge between the
vertices in NG′(v). Since T ′1 and T ′2 are both spanning trees of G′, this implies that v is a
leaf node of one of these trees, and is incident to two edges of the other tree. Without loss
of generality assume dT ′

1
(v) = 1 and dT ′

2
(v) = 2. Let NT ′

1
(v) = {x} and NT ′

2
(v) = {y, z},

where y 6∈ {x, z}, but potentially x = z. Then, T1 = T ′1 − v. In order for T2 to be a tree,
it must be formed by deleting v from T ′2, and then adding an edge e between y and z. In
other words, T2 = T ′2 − v + e. Let (G, p) be a realisation for G in the plane. We shall use
p to construct a realisation p′ for G ′.

For all pairs of points (a, b), (c, d) ∈ R2, write (a, b) 6 (c, d) if a 6 c and b 6 d
and write (a, b) < (c, d) if, in addition, (a, b) 6= (c, d). Note that reflecting the set of
points {p(w) : w ∈ V (G)} through either of the coordinate axes in R2 generates another
realisation of G in which the framework colours for all pairs {p(u), p(w)} are preserved.
For a pair of vertices u,w ∈ V (G), write u ∼ w if either u = w, or, w is joined to u by a
sequence of parallel edges in G− e.
Case 1. Suppose x 6= z and yz 6∈ E(T1).
By reflecting in a coordinate axis we may assume, without loss of generality, that p(z) <
p(y). Let p′(w) = p(w) for all w ∈ V (G). Since yz ∈ E(T2), any placement of p′(v) on
the line p′(y) + µ(p′(z)− p′(y)), µ ∈ R, which is distinct from p′(y) and p′(z), will ensure
the pairs {p′(v), p′(y)} and {p′(v), p′(z)} are well-positioned with framework colour 2.
Similarly, for all −1 < a < 1, any placement of p′(v) on the line p′(x) + λ(1, a), λ ∈ R,
which is distinct from p′(x), will ensure {p′(v), p′(x)} is well-positioned with framework
colour 1. Hence, if we place p′(v) in a small neighbourhood of the intersection of the
two lines p′(x) + λ(1, a) and p′(y) + µ(p′(z)− p′(y)), and p′(v) is chosen so that it is not
coincident with any other vertex of G′, then (G′, p′) is a realisation of G ′. See Figure 2(a).

Case 2. Suppose x 6= z and yz ∈ E(T1).
Contract the parallel edges between y and z in G to form a new 2-tree decomposition
G∗ = (G∗;T ∗1 , T

∗
2 ). Write V (G∗) = V (G)−{y, z}+{w0} where w0 is the vertex obtained by

identifying y and z. Since G∗ has fewer vertices than G, there exists a realisation p∗ for G∗
in the plane. By reflecting in a coordinate axis we may assume, without loss of generality,
that p∗(w0) < p∗(x). From this realisation, we can construct a new realisation p for G with
the property that p(z) < p(y) < p(x). Formally, set p(z) = p∗(w0), p(y) = p∗(w0)+ε′(1, 1),
p(w) = p∗(w) + ε′(1, 1) for all w ∼ y with w 6= y, for some sufficiently small ε′ > 0, and
p(w) = p∗(w) for all remaining w ∈ V (G). Let o denote the intersection of the lines
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p(z)

p(y)

p(x)p′(v)

(a) When x 6= z and yz 6∈
E(T1).

p(z)

p(y)

p(x)o

p′(z)

p′(v)

(b) When x 6= z, yz ∈ E(T1)
and o < p(x).

Figure 2: Some choices for p′(v) in (G′, p′) when x, y and z are distinct. Features of (G′, p′)
are shown in black, with solid and dashed black lines denoting edges in T ′1 and T ′2 respectively.
For each vertex w ∈ {x, y, z} we highlight in grey either a shaded region or a line, such that
any placement p′(v) within this region ensures the pair {p′(v), p′(w)} satisfies the geometric
constraints implied by the 2-tree decomposition of G′. Note that in example (b), both T1 and
T2 contain a yz-edge, so to ensure the pair {p′(y), p′(z)} is well-positioned after yz ∈ E(T2) is
deleted, we shift p(z) upwards.

p(x) + λ(1, 0) and p(y) + µ(1, 1). Note p(z), p(y) and o are collinear and by choosing ε′

sufficiently small we may assume, without loss of generality, that p(y) 6= o.
Let ε > 0 and δ > 0. If o < p(x) then, informally, place p′(v) below p(z) and then

translate p(z) upwards. See Figure 2(b). Any vertex in G which is joined to z by a
sequence of parallel edges in G − e must also be translated upwards. Formally, define p′

by setting p′(v) = p(z) + δ(0,−1) and, for each w ∈ V (G),

p′(w) =

{
p(w) + ε(0, 1) if w ∼ z, and,

p(w) otherwise.

If p(x) < o then, informally, place p′(v) above o and then translate p(y) downwards.
See Figure 3(a). Any vertex in G which is joined to y by a sequence of parallel edges in
G−e must also be translated downwards. Formally, define p′ by setting p′(v) = o+δ(0, 1)
and, for each w ∈ V (G),

p′(w) =

{
p(w) + ε(0,−1) if w ∼ y, and,

p(w) otherwise.

If p(x) = o then p(x), p(y) and p(z) are collinear. Choose p′(v) in a small neighbour-
hood of the intersection of the horizontal line through p(x) and the vertical line through
p(y). Then translate p(y) downwards. See Figure 3(b). Any vertex in G which is joined
to y by a sequence of parallel edges in G − e must also be translated downwards. Thus,
for each w ∈ V (G) we define,

p′(w) =

{
p(w) + ε(0,−1) if w ∼ y, and,

p(w) otherwise.
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p(z)

p(y)

p(x)
o

p′(y)

p′(v)

(a) When x 6= z, yz ∈
E(T1) and p(x) < o.

p(z)

p(y)

p(x)

p′(y)

p′(v)

(b) When x 6= z, yz ∈
E(T1) and p(x) = o.

Figure 3: Further choices for p′(v) in (G′, p′) when x, y and z are distinct and yz ∈ E(T1).
In each case, we place p′(y) below p(y) to ensure the pair {p′(y), p′(z)} is well-positioned after
yz ∈ E(T2) is deleted.

Case 3. Suppose x = z.
In this case v sends a double edge to x: one edge in T ′1 and the other in T ′2. If xy 6∈ E(T1),
then let p′(w) = p(w) for all w ∈ V (G). Place p′(v) at the intersection of the lines
p′(x) + λ(1, 1) and p′(y) + µ(a, 1) where −1 < a < 1. Choose a such that p′(v) is not
coincident with any other vertex of (G′, p′). See Figure 4(a).

If xy ∈ E(T1) then by reflecting in a coordinate axis we may assume, without loss
of generality, that p(x) < p(y). Informally, place p′(v) at p(y) and then translate p(y)
downwards. Any vertex in G which is joined to y by a sequence of parallel edges in G− e
must also be translated downwards. Formally, define p′ by setting p′(v) = p(y) and, for
each w ∈ V (G),

p′(w) =

{
p(w) + ε(0,−1) if w ∼ y, and,

p(w) otherwise,

where ε > 0. See Figure 4(b)

lxv

p(x)

p(y)

p′(v)

(a) When x = z and xy 6∈ E(T1).

lxv

p(x)

p(y) = p′(v)

p′(y)

(b) When x = z and xy ∈ E(T1).

Figure 4: Choices for p′(v) in (G′, p′) when x = z. Since both T ′1 and T ′2 contain an xv-edge,
the line lxv through p′(x) and p′(v) has slope 1.
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In each case, ε and δ can be chosen sufficiently small so that p′(v) satisfies the required
constraints and so that the points {p′(w) : w ∈ V (G′)} are distinct. Thus (G′, p′) is a
realisation for G ′.

We can now prove that every 2-tree decomposition has a realisation in the plane.

Theorem 4.3. Let G = (G;T1, T2) be a 2-tree decomposition. Then there exists a realisa-
tion for G in the plane.

Proof. By Corollary 3.5, there exists a sequence of 2-tree decompositions and 2-tree 0 and
1-extensions which construct G from the base element K1. Note that a realisation of K1 is
obtained by placing the vertex of K1 anywhere in the plane. By Propositions 4.1 and 4.2,
there exists a realisation for every 2-tree decomposition in this sequence, in particular,
such a realisation exists for G.

As a corollary we obtain an alternative proof of the following result from [8].

Corollary 4.4. Let G be a (2, 2)-tight simple graph. Then there exists a placement p such
that (G, p) is well-positioned and minimally rigid in (R2, ‖ · ‖∞).

Proof. By Theorem 2.2, G admits a 2-tree decomposition G = (G;T1, T2). By Theorem
4.3, this 2-tree decomposition has a realisation (G, p) in the plane. By Theorem 2.1, this
realisation is minimally rigid in (R2, ‖ · ‖∞).

5 Symmetric 2-tree decompositions

In this section we adapt the methods of the previous pages to show that every symmetric
2-tree decomposition, with no fixed edges, can be realised as a symmetric framework in the
plane which is minimally rigid with respect to `1 or `∞ distance constraints. We focus on
frameworks with reflectional symmetry through a coordinate axis. Our motivation comes
from recent work ([9]) which characterises the class of symmetric graphs which admit a
symmetric and minimally rigid realisation in the plane, in terms of certain symmetric
2-tree decompositions. The main results of this section make the task of constructing
examples of symmetric minimally rigid frameworks significantly easier. These results also
suggest that further adaptations may be possible in other contexts, such as gain graph
constructions for symmetric frameworks.

By a Z2-symmetric multi-graph we will mean a pair (G, θ) consisting of a multi-graph
G, with no loops, and a non-trivial group homomorphism θ : Z2 → Aut(G). Let Z2 = 〈s〉.
To simplify notation, we denote θ(s) by sθ and for each edge e = v1v2 we write sθ(e) =
sθ(v1)sθ(v2). The vertex orbit of v ∈ V (G) is the set {v, sθ(v)} and the edge orbit of
e ∈ E(G) is {e, sθ(e)}. We say that a vertex v (respectively an edge e) is fixed if v = sθ(v)
(respectively e = sθ(e)).
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Definition 5.1. A symmetric 2-tree decomposition is a tuple G = (G;T1, T2; θ) such that,

(a) (G;T1, T2) is a 2-tree decomposition,

(b) (G, θ) is a Z2-symmetric multi-graph, and

(c) sθ(T1) = T1 and sθ(T2) = T2.

Denote by Gsym2 the set of all symmetric 2-tree decompositions with no fixed edges.
We formally include in Gsym2 the tuple K1 = (K1;T1, T2; θ) where K1 is the graph with a
single vertex v0 and no edges, T1 and T2 have empty edge set, and θ : Z2 → Aut(K1) is
the trivial group homomorphism with sθ(v0) = v0. This tuple will form the base element
of a construction scheme for Gsym2 .

Lemma 5.2. Let G = (G;T1, T2; θ) ∈ Gsym2 with G 6= K1. Then sθ fixes exactly one vertex
which has even degree at least 4.

Proof. The case where G is a simple graph is proved in [9, Lemma 3] and this proof
extends to the multi-graph case.

5.1 Multi-graph construction scheme for Gsym
2

The following two graph moves were applied in the context of simple graphs, and with
d = 2, in [9] (where they were referred to as Z2-symmetric 1-extensions and Z2-symmetric
2-extensions). Here we will first extend the moves to multi-graphs, allowing d ∈ {1, 2},
and then introduce corresponding moves for symmetric 2-tree decompositions.

Definition 5.3. A Z2-symmetric multi-graph (G′, θ′) is said to be obtained from a Z2-
symmetric multi-graph (G, θ) by a symmetric d-dimensional 0-extension if,

(a) V (G′) = V (G) ∪ {v, sθ′(v)} where v, sθ′(v) /∈ V (G) and v 6= sθ′(v),

(b) sθ′ |V (G) = sθ,

(c) E(G′) = E(G) + {vvi, sθ′(vvi) : i = 1, . . . , d} for some v1, . . . , vd ∈ V (G) not neces-
sarily distinct.

See Figure 5 for examples of such a move when d = 2.

Definition 5.4. A Z2-symmetric multi-graph (G′, θ′) is said to be obtained from a Z2-
symmetric multi-graph (G, θ) by a symmetric d-dimensional 1-extension if,

(a) V (G′) = V (G) ∪ {v, sθ′(v)} where v, sθ′(v) /∈ V (G) and v 6= sθ′(v),

(b) sθ′ |V (G) = sθ,

(c) there exist d + 1 vertices v1, . . . , vd+1 ∈ V (G), with e = v1v2 ∈ E(G) but which are
otherwise not necessarily distinct, such that E(G′) = E(G)−{e, sθ(e)}+{vvi, sθ′(vvi) :
i = 1, . . . , d+ 1}.
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G
x

y

sθ(x)

sθ(y)

G ′

x

y v

sθ(x)

sθ(y)sθ(v)

(a) A symmetric 2-tree decomposition G′ formed from a symmet-
ric 2-tree decomposition G by a symmetric 2-tree 0-extension.

G

x

sθ(y)y

G ′

x

sθ(y)y

sθ(v)v

or

G ′′

x

sθ(y)y

sθ(v)v

(b) Two symmetric 2-tree decompositions, G′ and G′′, each formed by a sym-
metric 2-tree 0-extension on the symmetric 2-tree decomposition G.

Figure 5: Symmetric 2-tree 0-extensions under half-turn (a) and single mirror (b) symmetry.

G

x

y

sθ(x)

sθ(y)

G ′

x

y
v

sθ(x)

sθ(y)sθ(v)

(a) Half-turn symmetry

G sθ(x)

sθ(y)

sθ(z)

x

y

z

G ′ sθ(x)

sθ(y)

sθ(z)
sθ(v)

x

y

z
v

(b) Single mirror symmetry

Figure 6: Symmetric 2-tree 1-extensions. In each case, the symmetric 2-tree decomposition
G′ is obtained from the symmetric 2-tree decomposition G by a symmetric 2-tree 1-extension.
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See Figure 6 for examples when d = 2.
We now adapt the above symmetric graph moves to incorporate symmetric 2-tree

decompositions. Again see Figures 5 and 6 for illustrations of these moves.

Definition 5.5. A symmetric 2-tree decomposition G ′ = (G′;T ′1, T
′
2; θ
′) is said to be

obtained from a symmetric 2-tree decomposition G = (G;T1, T2; θ) by a symmetric 2-tree
j-extension, where j ∈ {0, 1}, if

(a) (G′, θ′) is obtained from (G, θ) by a symmetric 2-dimensional j-extension, and,

(b) for i ∈ {1, 2}, (T ′i , θ
′) is obtained from (Ti, θ) by a symmetric ki-extension, for some

ki ∈ {0, 1} where k1 + k2 = j.

We now prove the existence of a construction scheme for symmetric 2-tree decompo-
sitions in Gsym2 which uses symmetric 2-tree 0 and 1-extensions.

Theorem 5.6. Let G ′ = (G′;T ′1, T
′
2; θ
′) ∈ Gsym2 with G ′ 6= K1. Then there exists G =

(G;T1, T2; θ) ∈ Gsym2 such that G ′ is obtained from G by either a symmetric 2-tree 0-
extension or a symmetric 2-tree 1-extension.

Proof. By Lemma 3.2, G′ has a vertex v of degree 2 or 3, and by Lemma 5.2, this
vertex is not fixed. Hence the vertex orbit {v, sθ′(v)} contains two distinct vertices with
dG′(v) = dG′(sθ′(v)). Since G′ is the edge-disjoint union of spanning trees T ′1 and T ′2, v is
incident to at least one edge ei ∈ E(T ′i ) from each of these trees.

Claim 3. If dG′(v) = 2, then G ′ is formed from a symmetric 2-tree decomposition G by a
symmetric 2-tree 0-extension.

Proof. In this case NG′(v) = {u1, u2}, where u1 and u2 need not be distinct. Since
dG′(v) = 2, and sθ′(v) 6∈ NG′(v), we can remove both v and sθ′(v) from G′ by separate 2-
dimensional 0-reductions to obtain a Z2-symmetric multi-graph (G, θ) with sθ = sθ′ |V (G).
Let Ti = T ′i − {v, sθ′(v)} and note that sθ(Ti) = Ti. Thus G = (G;T1, T2; θ) ∈ Gsym2 . By
reversing this process, G ′ may be obtained from G by a symmetric 2-tree 0-extension.

Claim 4. If dG′(v) = 3 then G ′ is formed from a symmetric 2-tree decomposition G by a
symmetric 2-tree 1-extension.

Proof. In this case v is incident to a third edge e3. Without loss of generality, suppose
e3 ∈ E(T ′1). For i ∈ {1, 2, 3}, none of the edges ei are fixed, so they each terminate at
some ui ∈ V (G′) − {v, sθ′(v)}. Hence each edge sθ′(ei) incident to sθ′(v) terminates at
sθ′(ui) ∈ V (G′)− {v, sθ′(v)}.

Since e1, e3 ∈ E(T ′1) and T ′1 is a tree, u1u3 6∈ E(T ′1), and so, since T ′1 is symmetric under
θ′, sθ′(u1)sθ′(u3) 6∈ E(T ′1) either. If {u1, u3} = {sθ′(u1), sθ′(u3)} then v, u1, sθ′(v), u3, v is
a cycle in T ′1, which is a contradiction. Hence {u1, u3} 6= {sθ′(u1), sθ′(u3)} and so we
can perform a 2-dimensional 1-reduction at v which adds the edge u1u3, followed by a
2-dimensional 1-reduction at sθ′(v) which adds the edge sθ′(u1)sθ′(u3) to form the graph
G.

Let G = (G;T1, T2; θ) be the symmetric 2-tree decomposition with,
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• G = G′ − {v, sθ′(v)}+ {u1u3, sθ′(u1u3)},

• T1 = T ′1 − {v, sθ′(v)}+ {u1u3, sθ′(u1u3)},

• T2 = T ′2 − {v, sθ′(v)}, and,

• sθ = sθ′|V (G).

Then sθ(Ti) = Ti and so G ∈ Gsym2 . Further T1 was obtained from T ′1 by a pair of tree
1-reductions, and T2 was formed from T ′2 by a pair of tree 0-reductions. Thus we can
reconstruct G ′ from G by a symmetric 2-tree 1-extension.

Since dG′(v) 6 3, these two claims complete the proof.

This result implies the inductive constructions sought:

Corollary 5.7. Let G = (G;T1, T2; θ) ∈ Gsym2 . Then, there exists a sequence of symmetric
2-tree decompositions in Gsym2 ,

K1 = G(1) → G(2) → · · · → G(n) = G

such that for all 2 6 i 6 n, G(i) is obtained from G(i−1) by a symmetric 2-tree j-extension,
for some j ∈ {0, 1}.

5.2 Realisations with Cs-symmetry

We shall now show how to construct a symmetric realisation for any symmetric 2-tree de-
composition from the class Gsym2 . We prove this explicitly for realisations under reflection
symmetry. The argument for half-turn symmetry is similar.

A symmetric placement of a Z2-symmetric multi-graph (G, θ) in the plane is a pair
(p, τ) consisting of an injective map p : V (G)→ R2 and a representation τ : Z2 → GL(R2)
such that τ(s)(p(v)) = p(sθ(v)) for all v ∈ V (G). If τ(s) is a reflection in a coordinate axis
then we refer to the pair (p, τ) as a Cs-placement of (G, θ). If τ(s) is a half-turn rotation
about the origin then we refer to (p, τ) as a C2-placement of (G, θ).

A Cs-realisation (respectively, C2-realisation) for a symmetric 2-tree decomposition
G = (G;T1, T2; θ) in the plane is a Cs-placement (respectively, C2-placement) (p, τ) of (G, θ)
with the property that (G, p) is a realisation for the 2-tree decomposition (G;T1, T2).

Proposition 5.8. Let G = (G;T1, T2; θ) and G ′ = (G′;T ′1, T
′
2; θ
′) be a pair of symmetric 2-

tree decompositions and suppose G ′ is obtained by applying a symmetric 2-tree 0-extension
to G.

If G has a Cs-realisation (p, τ) in the plane then G ′ has a Cs-realisation (p′, τ) in the
plane with the property that p′(w) = p(w) for all w ∈ V (G).

Proof. Let (p, τ) be a Cs-realisation for G in the plane. Suppose the symmetric 2-tree
0-extension which forms G ′ from G adjoins the vertices v and sθ′(v) to G. Let G ′′ be the
intermediate (and non-symmetric) 2-tree decomposition obtained by deleting sθ′(v) and
its incident edges from G′. Note that G ′′ is obtained from G by a (non-symmetric) 2-tree
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0-extension. By Proposition 4.1, there exists a realisation p′′ for G ′′ with the property
that p′′(w) = p(w) for all w ∈ V (G). Define p′(w) = p(w) for all w ∈ V (G), p′(v) = p′′(v)
and p′(sθ′(v)) = τ(s)(p′(v)). The resulting pair (p′, τ) is a Cs-realisation for G ′.

To complete the inductive construction we now consider geometric placements for
symmetric 2-tree 1-extensions.

Proposition 5.9. Let G = (G;T1, T2; θ) and G ′ = (G′;T ′1, T
′
2; θ
′) be a pair of symmetric 2-

tree decompositions and suppose G ′ is obtained by applying a symmetric 2-tree 1-extension
to G.

If G, and every symmetric 2-tree decomposition with fewer vertices than G, has a
Cs-realisation in the plane then G ′ has a Cs-realisation in the plane.

Proof. Let (p, τ) be a Cs-realisation for G in the plane. We may assume, without loss of
generality, that τ(s) is a reflection in the y-axis.

Suppose the symmetric 2-tree 1-extension which forms G′ from G adjoins the vertices
v and sθ′(v). Then dG′(v) = 3, and G is formed from G′ by deleting v, sθ′(v), and all
edges incident to either of these vertices, before adding an edge e between the vertices in
NG′(v) and another edge sθ′(e) between the vertices in NG′(sθ′(v)).

Suppose dT ′
1
(v) = 1 and dT ′

2
(v) = 2. For a pair of vertices u,w ∈ V (G), write u ∼s w

if either u ∈ {w, sθ(w)}, or, u is joined to either w or sθ(w) by a sequence of parallel
edges in G − {e, sθ(e)}. The construction of p′ now follows the proof of Proposition 4.2
almost verbatim by replacing ∼ with ∼s and setting p′(sθ′(v)) = τ(s)(p′(v)). The case
where dT ′

1
(v) = 2 and dT ′

2
(v) = 1 can be proved by similar methods.

Theorem 5.10. Let G = (G;T1, T2; θ) ∈ Gsym2 be a symmetric 2-tree decomposition with
G 6= K1. Then G has a Cs-realisation in the plane.

Proof. Use Propositions 5.8 and 5.9, and apply a similar argument to the proof of Theorem
4.3.

Theorem 5.10 shows that it is always possible to construct examples of isostatic Cs-
symmetric frameworks in the `∞ plane which induce prescribed symmetric monochrome
spanning trees with no fixed edges. In the following, note that not all (2, 2)-tight Z2-
symmetric graphs admit a symmetric 2-tree decomposition.

Corollary 5.11. Let (G, θ) be a Z2-symmetric simple graph. If (G, θ) admits a symmetric 2-
tree decomposition G = (G;T1, T2; θ), with no fixed edges, then there exists a Cs-realisation
for G in the plane which is well-positioned and minimally rigid in (R2, ‖ · ‖∞).

Proof. By Theorem 5.10, the symmetric 2-tree decomposition G has a Cs-realisation in
the plane. By Theorem 2.1, this realisation is minimally rigid in (R2, ‖ · ‖∞).

the electronic journal of combinatorics 27(2) (2020), #P2.49 18



6 Open problems

In Section 4, we showed that given any multi-graph with a partition of its edge set into
two spanning trees, there exists a realisation of this 2-tree decomposition in the plane. It
is not known whether this result extends to d-dimensions. Indeed, a solution here would
settle a particular case of another open problem which is to determine whether every
(d, d)-tight graph has a rigid placement in (Rd, ‖ · ‖q) for d > 3 and q 6= 2.

Open Problem 5 (Rigidity for `q norms.). Let G be a simple graph which is an edge-
disjoint union of d spanning trees T1, . . . , Td, where d > 3.

(a) Does there exist a placement of G in Rd such that the induced monochrome subgraphs
of G are precisely T1, . . . , Td?

(b) Does there exist an isostatic placement of G in (Rd, ‖ · ‖q) for all (or for some) q 6= 2?

A positive answer to (a) would imply a positive answer to (b) in the case q = ∞. If
d = 2, then the answer to both questions is “yes”.

The following example highlights the geometric difficulties which can arise in extending
the constructive method presented here to higher dimensions. However, it may still be
possible to solve the realisation problem for d > 3 by adapting these geometric arguments.

Example 6. Suppose G = (G;T1, T2, T3) is a 3-tree decomposition with a realisation
(G, p) in R3. Suppose x, y, z are vertices of G with p(x) = (0, 0, 0), p(y) = (−1, 3,−1)
and p(z) = (−1, 10,−3). Now suppose a 3-tree 0-extension is applied to G at the vertices
x, y, z, which adds the vertex v and results in a 3-tree decomposition G ′ = (G′;T ′1, T

′
2, T

′
3)

with xv ∈ T1, yv ∈ T2 and zv ∈ T3. For these trees to correspond to the monochromatic
trees induced by a framework colouring for G′, we must have

‖p(v)− p(x)‖∞ = |p(v)1 − p(x)1| = |p(v)1|,
‖p(v)− p(y)‖∞ = |p(v)2 − p(y)2| = |p(v)2 − 3|, and

‖p(v)− p(z)‖∞ = |p(v)3 − p(z)3| = |p(v)3 + 3|.

However, there is no such point p(v) ∈ R3.

A related problem is that of constructing examples of redundantly rigid frameworks
in (Rd, ‖ · ‖q). Here a framework is redundantly rigid if it is rigid and every subframework
obtained by the removal of a single edge is also rigid. Such frameworks have played a key
role in the study of global rigidity for frameworks in Euclidean space (see for example [4]).

Open Problem 7 (Redundant rigidity for `q norms.). Let G be a simple graph which
is an edge-disjoint union of d Hamilton cycles H1, . . . , Hd, where d > 2.

(a) Does there exist a placement of G in Rd such that the induced monochrome subgraphs
of G are precisely H1, . . . , Hd?
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(b) Does there exist a redundantly rigid placement of G in (Rd, ‖ ·‖q) for all (or for some)
q 6= 2?

A positive answer to (a) would imply a positive answer to (b) in the case q =∞.

Similar realisation problems arise for other norms. For example, it is shown in [7] that
rigidity for the cylinder norm on R3 is characterised by an induced framework colouring
which decomposes the graph into an edge-disjoint union of a spanning tree and a spanning
Laman graph. Again whether the existence of such a decomposition implies the existence
of a geometric realisation is open.

Open Problem 8 (Rigidity for the cylinder norm.). Let G be a simple graph which is
an edge-disjoint union of two spanning subgraphs T and L where T is a tree and L is a
Laman graph.

(a) Does there exist a placement of G in (R3, ‖ · ‖cyl) such that the induced monochrome
subgraphs of G are precisely T and L?

(b) Does there exist an isostatic placement of G in (R3, ‖ · ‖cyl)?

A positive answer to (a) would imply a positive answer to (b). The smallest graph in
this class is K6− e, obtained by removing a single edge from the complete graph K6, and
this graph does admit an isostatic placement in (R3, ‖ · ‖cyl) (see [7]).

Realisation problems of this type also arise in considering forced symmetric rigidity (see
for example [5, 11, 13] for the Euclidean context). A characterisation is obtained in [10]
for forced reflectional symmetry in the `∞ plane which is expressed in terms of framework
colourings on the associated gain graphs. In this case, the gain graph is expressed as an
edge-disjoint union of a spanning unbalanced map graph and a spanning tree.

Open Problem 9 (Forced symmetric rigidity for the `∞ norm.). Let G0 be a gain graph
for a Z2-symmetric graph which is expressible as an edge-disjoint union of two spanning
subgraphs T and M , where T is a tree and M is an unbalanced map graph.

Does there exist a placement of the covering graph G in the plane, with reflectional
symmetry, such that the induced monochrome subgraphs of G0 are precisely T and M?
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