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Abstract. Let A be a Banach algebra with identity 1 and p ∈ A be a non-
trivial idempotent. Then q = 1−p is also an idempotent. The subalgebras pAp
and qAq are Banach algebras, called reduced Banach algebras, with identities p
and q respectively. For a ∈ A and ε > 0, we examine the relationship between
the ε-pseudospectrum of a ∈ A, Λε(A, a) and ε-pseudospectra of pap ∈ pAp,
Λε(pAp, pap) and of qaq ∈ qAq, Λε(qAq, qaq). We also extend this study by
considering a finite number of idempotents p1, · · · , pn, as well as an arbitrary
family of idempotents satisfying certain conditions.

1. Introduction

In this note, we study the decomposition of the spectrum and pseudospectrum
of an element in a Banach algebra into the spectra and pseudospectra of its
corresponding elements in reduced Banach algebras.

Suppose T is a bounded operator on a Hilbert space H that can be expressed
as the direct sum of two closed subspaces H1 and H2. Let P1 and P2 = I − P1

be the bounded linear projections onto H1 and H2 respectively. The operator T
commutes with P1 and P2 iff H1 and H2 are invariant under T . In this case T can
be expressed as the direct sum T1 ⊕ T2, where T1 = P1T ↾H1 and T2 = P2T ↾H2 .
It is easily seen that σ(B(H), T ) = σ(B(H1), T1) ∪ σ(B(H2), T2). This can be
extended to a finite direct sum of operators. See Problem 98 in [6]. The case of
infinite direct summands is a little different. See Theorem 2.3 in [4].

This can also be extended to the decomposition of the spectrum of an element in
an arbitrary Banach algebra. If p ∈ A is an idempotent in a Banach algebra, then
pAp = {pap : a ∈ A} is a closed subalgebra of A called a reduced Banach algebra.
If q = 1−p, then q is an idempotent too, and thus qAq is also a closed subalgebra
of A. Then for a ∈ A that commutes with p, σ(A, a) = σ(pAp, pa) ∪ σ(qAq, qa).
A similar result is true for the case of a finite number of idempotents {pi}ni=1

satisfying
n∑

i=1

pi = 1 (see Lemmas 3.1 and 3.2).

Further, we would like to examine if such a decomposition holds for the ε-
pseudospectrum Λε(A, a) of a ∈ A. We show that if p1, · · · , pn are idempotents
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in A such that
n∑

i=1

pi = 1, and a ∈ A commutes with each pi, then

Λ ε
n
(A, a) ⊆

n∪
i=1

Λε(piApi, pia) ⊆ Λmax ∥pi∥
i

ε(A, a).

See Theorem 3.3.
We then study specific cases in which

Λε(A, a) =
n∪

i=1

Λε(piApi, pia). (1.1)

This happens, for instance, if a is a G1 element or if each pi is a self adjoint
projection in a C∗-algebra. See Theorems 3.6 and 3.7. The decomposition (1.1)
occurs precisely when ∥(λ−a)−1∥ = max

i
∥pi(λ−a)−1∥. We hence consider those

Banach algebras and idempotents {pi} that satisfy ∥a∥ = max
i

∥pia∥ ∀a ∈ A.

We use a result from [11] to show that for the Banach algebra of bounded linear
operators on a Banach space X, and Pi ∈ B(X) idempotent operators such that

PiPj = 0, i ̸= j and
n∑

i=1

Pi = I, this property is satisfied precisely when the norm

on X satisfies the following:

∥Pix∥ = ∥Piy∥ ∀i ⇒ ∥x∥ = ∥y∥.

Suppose A is a Banach algebra, p1, · · · , pn ∈ A are idempotents such that
n∑

i=1

pi = 1 and pipj = 0, i ̸= j and ∥a∥ = max
i

∥pia∥, ∀a ∈ A. Then we show that

each pi is Hermitian and (1.1) is satisfied. See Theorems 3.17 and 3.18. However,
each pi being Hermitian is not sufficient for (1.1) to occur as seen in Example
3.15.

In Section 4, we examine the infinite case. We consider a family of idempo-
tent operators on a Hilbert space or a Banach space X, that converges strongly
to the identity operator and consider the decomposition of the spectrum and
pseudospectrum of T ∈ B(X). The spectrum of T ∈ B(X) is in general larger
that the union of the spectra of PnT , the difference in the two sets arising from
those complex numbers λ for which sup

n
∥(λPn − PnT )

−1∥ = ∞. Similarly, the

pseudospectrum of T may properly contain the union of the pseudospectra of its
reduced components. The difference in the two sets arises from those complex
numbers λ for which ∥(λ−T )−1∥ = 1

ε
. In special cases, the pseudospectrum of T is

equal to the closure of the union of the pseudospectra of its reduced components.
See Theorem 4.4 and Remark 4.5.

The primary objective of this note is to show that the pseudospectra of cer-
tain elements of Banach algebras can be decomposed into the pseudospectra of
elements of certain reduced subalgebras. This could make it easier to compute
the pseudospectra of certain operators. Examples 4.10 and 4.11 are simple illus-
trations of this.
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2. Definitions

Let A be a complex Banach algebra with unit 1. For λ ∈ C, λ.1 is identified
with λ. Let Inv(A) = {x ∈ A : x is invertible in A} and Sing(A) = {x ∈ A :
x is not invertible in A}.
Definition 2.1. The spectrum of an element a ∈ A is defined as:

σ(A, a) := {λ ∈ C : λ− a ∈ Sing(A)}.
Definition 2.2. The spectral radius of an element a ∈ A is defined as:

r(A, a) := sup{|λ| : λ ∈ σ(a)}.
Definition 2.3. Let ε > 0. The ε-pseudospectrum Λε(a) of a ∈ A is defined by

Λε(A, a) := {λ ∈ C : ∥(λ− a)−1∥ ≥ ε−1}
with the convention that ∥(λ− a)−1∥ = ∞ if λ− a is not invertible.

If the algebra A is fixed or is clear from the context, then we use simplified
notations σ(a), r(a) and Λε(a) in place of σ(A, a), r(A, a) and Λε(a) respectively.
The basic reference for pseudospectrum, especially for matrices, is the book [17].
The ε-pseudospectrum of an element of an arbitrary Banach algebra has been
studied in [9].

Definition 2.4. Let A be a Banach algebra and a ∈ A. The numerical range
(see Definition 1.10.1 in [2]) of a is defined by

V (a) := {f(a) : f ∈ A′, f(1) = 1, ∥f∥ = 1},
where A′ is the dual space of A.

Definition 2.5. Let A be a Banach algebra and a ∈ A. Then a is said to be
Hermitian if V (a) ⊆ R.

Definition 2.6. Let A be a Banach algebra and p ∈ A be an idempotent. Then
pAp = {pap : a ∈ A} is a closed subalgebra of A called a reduced Banach algebra.

3. Reduced Banach Algebras

Let A be a Banach algebra and p ∈ A be an idempotent element, that is,
p = p2. We shall always assume that p is non-trivial, that is, p ̸= 0 and p ̸= 1.
Let q = 1 − p. Now, suppose a ∈ A is such that ap = pa. Then observe that
qa = aq. We observe that ∥p∥, ∥q∥ ≥ 1. We examine the relationships between
the spectrum and pseudospectrum of a ∈ A and the spectra and pseudospectra
of pa = pap ∈ pAp and qa = qaq ∈ qAq.

We show that σ(A, a) = σ(pAp, pa) ∪ σ(qAq, qa). This is an elementary result
and a version of it in the case of Hilbert space operators can be found in Problem
98 of [6]. We provide the proof here for the sake of completeness.

Lemma 3.1. Let A be a unital Banach algebra, p ∈ A be an idempotent, and
q = 1− p. Let a ∈ A be such that ap = pa. Then

σ(A, a) = σ(pAp, pa) ∪ σ(qAq, qa).

Thus, r(a) = max {r(pAp, pa), r(qAq, qa)}.
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Proof. Without loss of generality, we assume that the element considered in the
spectrum or union of spectra is λ = 0.

If a is invertible in A, then pa is invertible in pAp with inverse pa−1 and qa is
invertible in qAq with inverse qa−1. Hence

σ(pAp, pa) ∪ σ(qAq, qa) ⊆ σ(A, a).

Conversely, suppose pa is invertible in pAp with inverse pbp and qa is invertible
in qAq with inverse qcq. Then

pa(pbp) = pabp = p = pbap = (pbp)ap, (3.1)

and

qacq = q = qcaq. (3.2)

Adding (3.1) and (3.2) gives

pabp+ qacq = p+ q = pbap+ qcaq.

Simplifying, we get

a(pbp+ qcq) = 1 = (pbp+ qcq)a.

Hence σ(A, a) ⊆ σ(pAp, pa) ∪ σ(qAq, qa). We also observe that the inverses of
λp−pa and λq− qa, when they exist, in pAp and qAq respectively are (λ−a)−1p
and (λ− a)−1q respectively. □

Next, suppose p1, · · · , pn ∈ A such that p2i = pi ∀i and
n∑

i=1

pi = 1. Suppose

api = pia ∀i. Then just as in the case of two idempotents, it can be easily shown

that σ(A, a) =
n∪

i=1

σ(piApi, pia). The same is mentioned in the case of Hilbert

space operators in Problem 98 of [6].

Lemma 3.2. Let A be a unital Banach algebra and p1, · · · , pn ∈ A such that

p2i = pi ∀i and
n∑

i=1

pi = 1. Suppose api = pia ∀i. Then

σ(A, a) =
n∪

i=1

σ(piApi, pia),

and

r(A, a) = max
i

r(piApi, pia).

We now consider the decomposition of the pseudospectrum into the pseudospec-
tra of the corresponding elements of the reduced Banach algebras.

Theorem 3.3. Let A be a unital Banach algebra and p1, · · · , pn ∈ A such that

p2i = pi ∀i and
n∑

i=1

pi = 1. Suppose api = pia ∀i. Let ε > 0 and K = max
i

∥pi∥.

Then

Λ ε
n
(A, a) ⊆

n∪
i=1

Λε(piApi, pia) ⊆ ΛKε(A, a).
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Proof. Let ε > 0 and λ ∈
n∪

i=1

Λε(piApi, pia). If λ ∈ σ(piApi, pia) for some i, then

λ ∈ σ(A, a) ⊆ Λε(A, a) ⊆ ΛKε(A, a). On the other hand, if λpi − pia is invertible
for all i, then λ − a is invertible. We have λ ∈ Λε(piApi, pia) for some i. Hence
∥pi(λ− a)−1∥ = ∥(λpi − pia)

−1∥ ≥ 1
ε
. Hence ∥(λ− a)−1∥ ≥ 1

∥pi∥
1
ε
≥ 1

Kε
. Thus

n∪
i=1

Λε(piApi, pia) ⊆ ΛKε(a).

Next, suppose λ /∈ Λε(piApi, pia) ∀i. Then each λpi−pia is invertible with inverse

pibipi, say, and ∥pibipi∥ < 1
ε
. Then λ− a is invertible with inverse

n∑
i=1

pibipi, and

further,

∥(λ− a)−1∥ = ∥
n∑

i=1

pibipi∥

< n
1

ε
.

Hence, we get

Λ ε
n
(A, a) ⊆

n∪
i=1

Λε(piApi, pia) ⊆ ΛKε(A, a).

□
Now, going back to the case n = 2, suppose ∥p∥ = ∥q∥ = 1. For example, this

happens if p is a non-trivial Hermitian idempotent.

Corollary 3.4. Let A be a unital Banach algebra, p ∈ A be an idempotent and
q = 1− p. Let a ∈ A be such that ap = pa. Suppose ∥p∥ = ∥q∥ = 1. Then

Λ ε
2
(A, a) ⊆ Λε(pAp, pa) ∪ Λε(qAq, qa) ⊆ Λε(A, a). (3.3)

We examine the question of when equality occurs in the second inclusion of
(3.3). It is easily observed that equality occures precisely when

∥(λ− a)−1∥ = max {∥p(λ− a)−1∥, ∥q(λ− a)−1∥}.

Definition 3.5. An element a ∈ A is said to be a G1-element if it satisfies the
following equality:

∥(z − a)−1∥ =
1

d(z, σ(a))
= r((z − a)−1) ∀z ∈ C \ σ(a).

See [12].

Now, suppose a ∈ A commutes with p, and in addition, a is a G1 element.
Then Λε(pAp, pa) ∪ Λε(qAq, qa) = Λε(A, a)

Theorem 3.6. Let A be a unital Banach algebra, p ∈ A be an idempotent and
q = 1− p. Suppose ∥p∥ = ∥q∥ = 1. Let a ∈ A be such that ap = pa, and suppose
a is a G1-element. Then

Λε(pAp, pa) ∪ Λε(qAq, qa) = Λε(A, a).
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Proof. The proof follows since

∥(λ− a)−1∥ = r((λ− a)−1)

= max {r(pAp, p(λ− a)−1), r(qAq, q(λ− a)−1)}
≤ max {∥p(λ− a)−1∥, ∥q(λ− a)−1∥}
≤ ∥(λ− a)−1∥.

□

We next consider the case that A is a C∗- algebra and p ∈ A is a self-adjoint
projection. We observe that the notion of a Hermitian idempotent coincides with
that of a self-adjoint projection in C∗-algebras.

Theorem 3.7. Let A be a unital C∗-algebra and p ∈ A be a self-adjoint projec-
tion. Let q = 1− p. Let a ∈ A be such that ap = pa. Then

Λε(pAp, pa) ∪ Λε(qAq, qa) = Λε(A, a).

Proof. Without loss of generality, assume that λ = 0. Then

∥a−1∥2 = ∥(a−1)∗a−1∥
= r(A, (a−1)∗a−1)

= max {r(pAp, p(a−1)∗a−1p), r(qAq, q(a−1)∗a−1q)}
= max {r(pAp, (a−1p)∗(a−1p)), r(qAq, (a−1q)∗(a−1q))}
≤ max {∥(a−1p)∗(a−1p)∥, ∥(a−1q)∗(a−1q)∥}
= max {∥pa−1∥2, ∥qa−1∥2}

□

Remark 3.8. Theorem 3.7 is stated for the finite dimensional case in (iv) of The-
orem 2.4 of [17].

It is easy to see from Lemma 3.2 that Theorems 3.6 and 3.7 can be generalised
to the case of finitely many idempotents of norm one satisfying

∑n
i=1 pi = 1.

Example 3.9. We give an example in which ∥p∥ = ∥q∥ = 1, but equality does not

occur in the second inclusion in (3.3). Let A = (C2×2, ∥ · ∥1) and p = 1
2

[
1 1
1 1

]
.

Let q = 1− p. Then p2 = p and ∥p∥ = 1 = ∥q∥. Now, if a ∈ A commutes with p,

it is necessarily of the form

[
α β
β α

]
, and pap = 1

2
(α+ β)

[
1 1
1 1

]
.

If pap is invertible in pAp, then its inverse is equal to 1
2(α+β)

[
1 1
1 1

]
. Similarly,

if qaq is invertible in qAq, then its inverse is equal to 1
2(α−β)

[
1 −1
−1 1

]
.

The following can be computed: σ(a) = {α+β, α−β}, ∥(λ−a)−1∥ = |β|+|λ−α|
|(λ−α)2−β2| ,

∥p(λ− α)−1∥ = 1
|λ−α−β| , and ∥q(λ− a)−1∥ = 1

|λ−α+β| .



PSEUDOSPECTRA OF ELEMENTS OF REDUCED BANACH ALGEBRAS 7

Choosing α = 0, β = 1, we get ∥(λ− a)−1∥ = 1+|λ|
|λ2−1| , ∥p(λ− a)−1∥ = 1

|λ−1| , and

∥q(λ− a)−1∥ = 1
|λ+1| .

Now, let ε = 1. Then it can be verified that λ = i ∈ Λε(A, a) but i /∈
Λε(pAp, pa)∪Λε(qAq, qa). Hence in this example, Λε(A, a) is strictly larger than
Λε(pAp, pa) ∪ Λε(qAq, qa).

Remark 3.10. Let X be a Banach space and P ∈ B(X) be an idempotent op-
erator. Let Q = I − P . Then X = Range P ⊕ Range Q. If T ∈ B(X) is an
operator such that PT = TP , then both Range P and Range Q are invariant
under T . Hence T = T1 ⊕ T2, where T1 = TP ↾ Range P and T2 = TQ ↾ Range Q.
Similarly, (λ − T )−1 = (λ − T )−1P ↾ Range P ⊕(λ − T )−1Q ↾ Range Q. We use the
following theorem due to Lancaster and Farahat (See Theorem 2 of [11]):

Let X = X1⊕· · ·⊕Xn be a direct sum of n Banach spaces. Let T = T1⊕· · ·⊕Tn

be a direct sum of operators acting on X. Then

∥T∥ = max
i

∥Ti∥

iff the norm on X is absolute, i.e.

∥xi∥ = ∥yi∥ ∀i =⇒ ∥x∥ = ∥y∥,

where x = (xi) and y = (yi).
Hence, in order to check whether ∥(λ − T )−1∥ = max {∥(λ − T )−1P∥, ∥(λ −

T )−1Q∥}, it suffices to check whether ∥x∥, the norm of x ∈ X is a function of
∥Px∥ and ∥Qx∥.

We see some examples of idempotent operators which satisfy the above norm
condition.

Example 3.11. Let A = (Cn×n, ∥ · ∥r), 1 ≤ r ≤ ∞, r ̸= 2. Here, ∥(xn)∥r =

(
∑n

i=1 |xn|r)
1
r for r ̸= ∞ and ∥(xn)∥∞ = max

n
|xn|. The Hermitian idempotent

elements of A can be shown to be diagonal matrices with diagonal entries equal to
0 or 1. Without any change in the norm, we may assume that k 1-s appear first as
diagonal entries, followed by (n− k) 0-s. Let P be such a Hermitian idempotent
matrix. If T ∈ A commutes with P , it must be a block diagonal matrix.

It can be checked that ∥ · ∥r is an absolute norm on the decomposition of Cn

into the ranges of P and Q in this case. Thus the induced operator norm has
the maximum property. This yields ∥(λ− T )−1∥ = max {∥P (λ− T )−1∥, ∥Q(λ−
T )−1∥}, λ /∈ σ(A, T ). Hence Λε(A, T ) = Λε(PAP, PT ) ∪ Λε(QAQ,QT ).

Example 3.12. Let Ω be a compact Hausdorff space and A = C(Ω), the space
of continuous functions on X. Then an operator P ∈ B(A) is Hermitian iff it is
of the form:

Pf = hf, f ∈ C(Ω), h a real valued function.

(See Theorem 6.29.3 of [3].) Further, if we want h to be an idempotent con-
tinuous function, it must necessarily be a characteristic function of a connected
component of Ω, say ∆. Hence Range P = {χ∆f : f ∈ C(Ω)} and Range Q =
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Range (I−P ) = {χ∆cf : f ∈ C(Ω)}. Clearly, for f ∈ C(Ω), ∥f∥∞ = sup
ω∈Ω

|f(ω)| =

max{sup
ω∈∆

|f(ω)|, sup
ω∈∆c

|f(ω)|} = max{∥χ∆f∥∞, ∥χ∆cf∥∞} = max{∥Pf∥, ∥Qf∥}.

Thus if ∥Pf∥ = ∥Pg∥ and ∥Qf∥ = ∥Qg∥, then ∥f∥ = ∥g∥. Hence the induced
operator norm has the required maximum property. Note that if such a P exists,
Ω must be disconnected.

We observe next that if the norm ∥x∥ on the Banach space X is a function of
∥Px∥ and ∥Qx∥, then P (and thus Q) must necessarily be Hermitian.

Theorem 3.13. Let X be a Banach space and P ∈ B(X) be an idempotent
operator. Let Q = I − P . Suppose ∃f : R+ × R+ → R+ such that

∥x∥ = f(∥Px∥, ∥Qx∥) ∀x ∈ X.

Then P is Hermitian. Further, if T ∈ B(X) such that PT = TP , then for ε > 0,

Λε(A, T ) = Λε(PAP, PT ) ∪ Λε(QAQ,QT ).

Proof. By Corollary 1.10.13 of [2], it suffices to show that ∥eitP∥ = 1 ∀t ∈ R.
Now, ∥eitPx∥ = ∥(I + P (eit − 1))x∥ since P is an idempotent. By the hypothesis
we get

∥eitPx∥ = f(∥P (I + P (eit − 1))x)∥, ∥Q(I + P (eit − 1))x∥)
= f(∥(Peit)x∥, ∥Qx∥)
= f(∥Px∥, ∥Qx∥)
= ∥x∥ ∀t ∈ R.

Hence, in fact, we get that eitP is an isometry for every real t, and thus P is
Hermitian. Hence, Q is also Hermitian and ∥P∥ = ∥Q∥ = 1. It then follows by
the theorem of Lancaster and Farahat ([11]) that

∥(λ− T )−1∥ = max {∥(λ− T )−1P∥, ∥(λ− T )−1Q∥}.

Hence Λε(A, T ) = Λε(PAP, PT )∪Λε(QAQ,QT ). Examples of idempotent opera-
tors that satisfy this condition are M- projections and L-projections (See [7]). □

Theorem 3.14. Let A be a Banach algebra and p ∈ A be an idempotent element.
Let q = 1− p. Suppose ∃f : R+ × R+ → R+ such that

∥a∥ = f(∥pa∥, ∥qa∥) ∀a ∈ A.

Then p is Hermitian and

f(λ, µ) = max {λ, µ} λ, µ ∈ R+.

Further, if a ∈ A commutes with p, then for ε > 0, Λε(A, a) = Λε(pAp, pa) ∪
Λε(qAq, qa).

Proof. We first show that p must be a Hermitian element. By Corollary 1.10.13
of [2], It suffices to show that ∥eitp∥ = 1 ∀t ∈ R. Since p is idempotent and by
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the hypothesis, we have ∀t ∈ R,

∥eitp∥ = ∥1 + p(eit − 1)∥
= f(∥p(1 + p(eit − 1))∥, ∥q(1 + p(eit − 1))∥)
= f(∥p∥, ∥q∥)
= ∥1∥
= 1.

Hence p is Hermitian, and thus ∥p∥ = 1 = ∥q∥.
Now, let λ, µ > 0. Let x = λp+ µq. Then px = λp and qx = µq. We have

f(λ, µ) = f(∥px∥, ∥qx∥)
= ∥x∥
= ∥(λ− µ)p+ µ∥
= r((λ− µ)p+ µ)

= max {λ, µ}.

The equality of spectral radius and norm of (λ − µ)p + µ follows because p
is Hermitian (See Proposition 2 of [16]). It then follows that ∥(λ − a)−1∥ =
max {∥p(λ − a)−1∥, ∥q(λ − a)−1∥}. By this observation and by Lemma 3.1, it
follows that if ap = pa, then Λε(A, a) = Λε(pAp, pa) ∪ Λε(qAq, qa). □

However, in general it is not true that if P is a Hermitian operator on a Banach
space, then ∥Px∥ = ∥Py∥ and ∥Qx∥ = ∥Qy∥ =⇒ ∥x∥ = ∥y∥. We give an
example of a Hermitian idempotent operator on a C∗ algebra, for which the
hypothesis of 3.13 does not hold.

Example 3.15. Let X = C2×2, the C∗ algebra endowed with the norm induced
by the Euclidean norm on C2 and p ∈ X be the Hermitian idempotent matrix p =

1
2

[
1 1
1 1

]
. Then q = 1

2

[
1 −1
−1 1

]
. Let Lp ∈ B(X) be the left multiplication

operator by p on A. Then Lp is a Hermitian idempotent operator on X. Let

Lq be the left multiplication by q on X. Let x =

[
1 3
2 1

]
and y = 1

2

[
5 5
3 1

]
.

Then one can check that ∥Lpx∥ = ∥Lpy∥ = 5√
2
and ∥Lqx∥ = ∥Lqy∥ =

√
5
2
, but

∥x∥ =

√
(3+

√
5)5

2
̸=

√
15+

√
200

2
= ∥y∥.

We now examine the question of equality of pseudospectrum of a ∈ A and the
union of the pseudospectra of pa ∈ pAp and qa ∈ qAq in Banach algebras with a
special property.

Theorem 3.16. Let A be a Banach algebra which satisfies the following:

Λε(A, a) =
∪

∥b∥≤ε

σ(A, a+ b) ∀a ∈ A.
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This is equivalent to:

∀a ∈ Inv(A), ∃b ∈ Sing(A) such that ∥a− b∥ =
1

∥a−1∥
.

(See Corollary 2.7 of [9].)
Let p ∈ A be a central idempotent element such that ∥p∥ = ∥q∥ = 1, where

q = 1− p. Then pAp = pA and

Λε(A, a) = Λε(pA, pa) ∪ Λε(qA, qa) ∀a ∈ A.

Proof. Let a ∈ A. Then

Λε(A, a) =
∪

∥b∥≤ε

σ(A, a+ b)

=
∪

∥b∥≤ε

σ(pA, p(a+ b)) ∪
∪

∥b∥≤ε

σ(qA, q(a+ b))

⊆
∪

∥pb∥≤ε

σ(pA, p(a+ b)) ∪
∪

∥qb∥≤ε

σ(qA, q(a+ b))

⊆ Λε(pA, pa) ∪ Λε(qA, qa).

The reverse inclusion is already true, hence the theorem follows. It is easy to see
from Lemma 3.2 that Theorem 3.16 can be generalised to the case in which there
exists finitely many central idempotents of norm one satisfying

∑n
i=1 pi = 1. □

We now extend some of the above results for a finite family of idempotents in
a Banach algebra.

Theorem 3.17. Let X be a Banach space and {Pi}ni=1 be a finite family of idem-
potents in A = B(X) such that PiPj = 0 if i ̸= j. Suppose ∃f : (R+)n → R such
that

∥x∥ = f((∥P1x∥, · · · , ∥Pnx∥)) ∀x ∈ X.

Then each Pi is Hermitian. Further, if T ∈ B(X) such that PiT = TPi ∀i, then
for ε > 0,

Λε(A, T ) =
n∪

i=1

Λε(PiAPi, PiT ).

Proof. For i = 1, say and t ∈ R,
∥eitP1x∥ = ∥(1 + P1(e

it − 1))x∥
= f(∥(P1e

it)x∥, · · · , ∥(Pnx∥)
= f(∥P1x∥, · · · , ∥Pnx∥)
= ∥x∥.

Similary each eitPi is an isometry and hence Pi is Hermitian, with ∥Pi∥ = 1. It
follows by the theorem of Lancaster and Farahat ([11]) that

∥(λ− T )−1∥ = max
i

{∥(λ− T )−1Pi∥}.

□
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Theorem 3.18. Let A be a Banach algebra and {pi}ni=1 be a finite family of
idempotent elements of A such that pipj = 0 if i ̸= j. Suppose ∃f : (R+)n → R
such that

∥a∥ = f((∥p1a∥, · · · , ∥pna∥)) ∀a ∈ A.

Then each pi is Hermitian and

f(λ1, · · · , λn) = max {λ1, · · · , λn}, λi ∈ R+.

Further, if a ∈ A commutes with each pi, then

Λε(A, a) =
n∪

i=1

Λε(piApi, pia).

Proof. For i = 1, say, and t ∈ R,

∥eitp1∥ = ∥1 + p1(e
it − a)∥

= f((∥(p1eit)∥, · · · , ∥pn∥))
= f((∥p1∥, · · · , ∥pn∥))
= ∥1∥
= 1.

Similarly, each pi is Hermitian and ∥pi∥ = 1. Next, let x =
n∑

i=1

λipi, λi > 0. Then

pix = λipi ∀i. Then
λi = ∥λipi∥

= ∥pix∥
≤ ∥x∥

= ∥
n∑

i=1

λipi∥

= f(∥λ1p1∥, · · · , ∥λnpn∥)
= f(λ1, · · · , λn) ∀i.

On the other hand,

f(λ1, · · · , λn) = ∥
n∑

i=1

λipi∥

= r(
n∑

i=1

λipi)

≤ max
i

{λi},

the last inequality following because σ(
n∑

i=1

λipi) ⊆ {λ1, · · · , λn}, due to the fact

that pipj = 0, i ̸= j. Hence ∥(λ−a)−1∥ = max
i

∥pi(λ−a)−1∥ and thus Λε(A, a) =
n∪

i=1

Λε(piApi, pia). □



12 ARUNDHATHI KRISHNAN and S. H. KULKARNI

4. The Infinite Case

We now examine the above results for an arbitrary family of idempotents
{pα}α∈I in a Banach algebra. We first consider the case A = B(H) for a Hilbert
spaceH. The following theorem is elementary and has been discussed in Theorem
2.3 of [4]. We provide the proof here for the convenience of the reader.

Theorem 4.1. Let H be a Hilbert space and {Pn}n∈N be a family of self-adjoint
idempotent operators in A = B(H), such that (

∑
n∈N

Pn)h = h ∀h ∈ H, that is, the

convergence of the series is in the strong operator topology. Suppose PnPm = 0 if
n ̸= m. Then H can be written as the direct sum ⊕n∈N PnH. Let T ∈ B(H) be an
operator that commutes with each Pn. Let Hn = PnH and Tn = TPn ↾Hn∈ B(Hn).
Then

σ(A, T ) =
∪
n∈N

σ(PnAPn, Tn) ∪ {λ ∈ C : sup
n∈N

∥(λPn − Tn)
−1∥ = ∞}.

Proof. We recall that for an operator T = ⊕nTn on a direct sum of Hilbert
spaces, ∥T∥ = sup

n
∥Tn∥ (See Exercise II.1.12 of [5]). Suppose λ−T is invertible

in A. Then clearly, λPn−Tn is invertible in PnAPn ∀n with inverses Pn(λ−T )−1,
and sup

n
∥(λPn − Tn)

−1∥ = ∥(λ− T )−1∥ < ∞. Conversely, suppose (λPn − Tn) is

invertible in PnAPn for all n with inverses (λPn−Tn)
−1, and sup

n
∥(λPn−Tn)

−1∥ <

∞, then ⊕n(λPn − Tn)
−1 is the inverse of λ− T in A. □

We now look at B(X) for a Banach space X. As in the Hilbert space case,
let {Pn}n∈N be a family of idempotent operators in B(X), such that (

∑
n∈N

Pn)x =

x ∀x ∈ X (that is, the series
∑
n∈N

Pn converges to the identity operator in the strong

operator topology) and PnPm = 0 if n ̸= m. Let Xn = PnX, and xn = Pnx for
x ∈ X. For a direct sum of Xn to make sense, we must specify the subspace
of

∏
n Xn and the norm on it that we intend to use (See page 72 of [5]). Most

often, we use either the r-norm (1 ≤ r < ∞) or the supremum norm. That is,

⊕nXn = {(xn) :
∞∑
n=1

∥xn∥r < ∞} and ∥x∥ = ∥(xn)∥ = (
∞∑
n=1

∥xn∥r)1/r, 1 ≤ r < ∞

and ⊕nXn = {(xn) : sup
n
∥xn∥ < ∞} and ∥x∥ = ∥(xn)∥ = sup

n
∥xn∥. We note

that in each of these cases, if Tn ∈ B(Xn), the operator T = ⊕Tn ∈ B(X) iff
sup
n
∥Tn∥ < ∞. For T ∈ B(X), let Tn = TPn ↾Xn∈ B(Xn). Examples of such

Banach spaces are lp spaces or more generally, lp direct sums of Banach spaces
(See [15]).

The following result is an elementary generalisation of Theorem 4.1 for opera-
tors on direct sums of Banach spaces.

Theorem 4.2. Let X be a Banach space and {Pn}n∈N be a family of idempotent
operators in A = B(X) satisfying the above conditions. Let T ∈ B(X) be an
operator that commutes with each Pn. Suppose the norm of x ∈ X is a function
f of (∥xn∥) and satisfies the following monotone condition: ∥xn∥ ≤ ∥yn∥ ∀n =⇒
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∥x∥ ≤ ∥y∥, x, y ∈ X and xn = Pnx, yn = Pny. Let Xn = PnX and Tn = TPn ↾Xn.
Then each Pn is Hermitian and

σ(A, T ) =
∪
n∈N

σ(PnAPn, Tn) ∪ {λ ∈ C : sup
n∈N

∥(λPn − Tn)
−1∥ = ∞}.

Proof. Let x = (xn) ∈ X. Let t ∈ R. For i = 1, say

∥eitP1x∥ = ∥(I + P1(e
it − T ))x∥

= f((∥(P1e
it)x∥, ∥P2x∥, · · · ))

= f((∥P1x∥, ∥P2x∥, · · · ))
= ∥x∥.

Similarly, each eitPi is an isometry whence each Pi is Hermitian and ∥Pi∥ = 1 ∀i.
Now,

∥Tx∥ = ∥(Tnxn)∥
≤ ∥(∥Tn∥xn)∥
≤ ∥(supn∥Tn∥xn)∥
= ∥(supn∥Tn∥)(xn)∥
= supn∥Tn∥∥x∥.

Clearly, ∥Tn∥ ≤ ∥T∥ ∀n. Hence ∥T∥ = sup
n

∥Tn∥, and the theorem then follows

as in Theorem 4.1. □

We next move on to the pseudospectra decomposition. We recall that some au-
thors (such as in [1] and [17]) have defined the following set as the ε-pseudospectrum
of a:

Λ∗
ε(a) := {λ ∈ C : ∥(λ− a)−1∥ > ε−1}.

We first give a decomposition for the ε- pseudospectrum defined this way.

Theorem 4.3. Let X be a Banach space and {Pn}n∈N be a family of idempotent
operators in A = B(X) as above. Let T ∈ B(X) be an operator that commutes
with each Pn. Suppose the norm on X satisfies the following monotone condition:
∥xn∥ ≤ ∥yn∥ ∀n =⇒ ∥x∥ ≤ ∥y∥, x, y ∈ X and xn = Pnx, yn = Pny as before.
Let Xn = PnX and Tn = TPn ↾Xn. Let ε > 0. Then

Λ∗
ε(A, T ) =

∪
n∈N

Λ∗
ε(PnAPn, Tn).

Proof. Let λ ∈ Λ∗
ε(A, T ). If λ ∈ σ(A, T ), then either λ ∈

∪
n

σ(PnAPn, Tn)

or sup
n

∥(λPn − Tn)
−1∥ = ∞. If λ ∈ σ(Pn0APn0 , Tn0) for some n0, then λ ∈∪

n

Λ∗
ε(PnAPn, Tn). If sup

n
∥(λPn − Tn)

−1∥ = ∞, then ∃n0 such that ∥(λPn0 −

Tn0)
−1∥ > 1

ε
, hence λ ∈

∪
n

Λ∗
ε(PnAPn, Tn). If λ−T is invertible and ∥(λ−T )−1∥ >

1
ε
, then ∥(λPn0 − Tn0)

−1∥ > 1
ε
for some n0, hence λ ∈ Λ∗

ε(Pn0APn0 , Tn0).
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For the other inclusion, let λ ∈
∪
n

Λ∗
ε(PnAPn, Tn). If λ ∈

∪
n

σ(PnAPn, Tn), then

λ ∈ σ(A, T ) ⊆ Λ∗
ε(T ). If λ−Tn is invertible ∀n and sup

n∈N
∥(λPn−Tn)

−1∥ < ∞, then

∥(λ− T )−1∥ > 1
ε
. If sup

n∈N
∥(λPn − Tn)

−1∥ = ∞, then λ ∈ σ(A, T ) ⊆ Λ∗
ε(A, T ). □

Now, let us consider the decomposition of the pseudospectrum defined with
the non-strict inequality.

Theorem 4.4. Let X be a Banach space and {Pn}n∈N be a family of idempotent
operators in A = B(X) as above. Let T ∈ B(X) be an operator that commutes
with each Pn. Suppose the norm on X satisfies the following monotone condition:
∥xn∥ ≤ ∥yn∥ ∀n =⇒ ∥x∥ ≤ ∥y∥, x, y ∈ X and xn = Pnx, yn = Pny as before.
Let Xn = PnX and Tn = TPn ↾Xn. Let ε > 0. Then

Λε(A, T ) =
∪
n∈N

Λε(PnAPn, Tn) ∪ {λ ∈ C : sup
n∈N

∥(λPn − Tn)
−1∥ =

1

ε
}.

Proof. Let λ ∈ Λε(A, T ). If λ ∈ σ(A, T ), then either λ ∈
∪
n

σ(PnAPn, Tn)

or sup
n

∥(λPn − Tn)
−1∥ = ∞. If λ ∈ σ(Pn0APn0 , Tn0) for some n0, then λ ∈∪

n

Λε(PnAPn, Tn). If sup
n

∥(λPn − Tn)
−1∥ = ∞, then ∃n0 such that ∥(λPn0 −

Tn0)
−1∥ ≥ 1

ε
, hence λ ∈

∪
n

Λε(PnAPn, Tn). If λ−T is invertible and ∥(λ−T )−1∥ ≥
1
ε
, then either ∥(λPn0 − Tn0)

−1∥ > 1
ε
for some n0 or ∥(λ− T )−1∥ = 1

ε
.

For the other inclusion, let λ ∈
∪
n

Λε(PnAPn, Tn). If λ ∈
∪
n

σ(PnAPn, Tn), then

λ ∈ σ(A, T ) ⊆ Λε(A, T ). If λ− Tn is invertible ∀n and sup
n∈N

∥(λPn − Tn)
−1∥ < ∞,

then ∥(λ−T )−1∥ ≥ 1
ε
. If sup

n∈N
∥(λPn−Tn)

−1∥ = ∞, then λ ∈ σ(A, T ) ⊆ Λε(A, T ).

□
Remark 4.5. In general, Λε(a) is not the closure of Λ∗

ε(a). However, this is true
in many cases. See [13] and [14]. In such cases, the above decomposition can be
modified to:

Λε(A, T ) =
∪
n∈N

Λε(PnAPn, Tn).

This follows because

Λε(A, T ) = Λ∗
ε(A, T )

=
∪
n∈N

Λ∗
ε(PnAPn, Tn)

⊆
∪
n∈N

Λε(PnAPn, Tn).

Already, since
∪
n∈N

Λε(PnAPn, Tn) ⊆ Λε(A, T ), and since Λε(A, T ) is closed, we

have ∪
n∈N

Λε(PnAPn, Tn) ⊆ Λε(A, T ).
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Theorems 4.2, 4.3 and 4.4 are also true if the countable family {Pn}n∈N is
replaced by an arbitrary family {Pα}α∈I . We write it here for the sake of com-
pleteness. The proof is identical to the countable case.

Theorem 4.6. Let X be a Banach space and {Pα}α∈I be a family of idempotent
operators in A = B(X) such that (

∑
α∈I

Pα)x = x ∀x ∈ X. Let T ∈ B(X) be

an operator that commutes with each Pα. Suppose the norm on X satisfies the
following monotone condition: ∥xα∥ ≤ ∥yα∥ ∀α ∈ I =⇒ ∥x∥ ≤ ∥y∥, x, y ∈ X
and xα = Pαx, yα = Pαy. Let Xα = PαX and Tα = TPα ↾Xα. Then each Pα is
Hermitian and

σ(A, T ) =
∪
α∈I

σ(PαAPα, Tα) ∪ {λ ∈ C : sup
α∈I

∥(λPα − Tα)
−1∥ = ∞}.

Further, if ε > 0, then

Λ∗
ε(A, T ) =

∪
α∈I

Λ∗
ε(PαAPα, Tα),

and

Λε(A, T ) =
∪
α∈I

Λε(PαAPα, Tα) ∪ {λ ∈ C : sup
α∈I

∥(λPα − Tα)
−1∥ =

1

ε
}.

Remark 4.7. In the case of infinite direct sums, we must assume that the conver-

gence of the infinite series (
∞∑
n=1

Pn = 1) is in the strong operator topology, since

a sequence of idempotents cannot converge to 0, and
∞∑
n=1

Pn convergent implies

∥Pn∥ → 0. Since there is no natural notion of this convergence in the case of an
abstract Banach algebra, we do not have the equivalent of Theorem 3.18 for the
case of infinitely many idempotents.

Remark 4.8. In the case of finite direct sums, it is sufficient to assume that the
norm on X = ⊕n

i=1Xi is an absolute norm (that is, ∥xn∥ = ∥yn∥ ∀n =⇒ ∥x∥ =
∥y∥), since every absolute norm on a finite direct sum is monotonic. This is
not clear for an infinite direct sum and hence we have assumed the monotone
condition on the norm in this case.

Remark 4.9. We also observe that if we have an uncountable family of idempotent
operators {Pα}α∈I satisfying (

∑
α Pα)x = x ∀x ∈ X, then for each x ∈ X, all but

countably many of the Pαx must be 0 (see Corollary 5.28 in [10]). Thus, in the
case of a separable Banach space, we obtain Pα = 0 for all but countably many
α and it suffices to consider the countable case.

We give some examples to illustrate the above theorems.

Example 4.10. Let Xn be Banach spaces and X = ⊕nXn with a suitable mono-
tonic norm defined on the direct sum. Let Tn = 1

n
In ∈ B(Xn), and T = ⊕nTn ∈
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B(X). Then σ(Tn) = { 1
n
} ∀n. Then it can be seen that ∥(λIn − Tn)

−1∥ = 1
|λ− 1

n
|

and hence σ(T ) =
∪

n{
1
n
} ∪ {0}, and Λε(Tn) = D( 1

n
; ε) ∀n. For λ /∈ σ(T ),

sup
n

∥(λ− Tn)
−1∥ = sup

n

1

|λ− 1
n
|
=


1
|λ| , Re λ < 0

1
|λ−1| , Re λ > 1

1
|λ− 1

n0
| for some n0 ∈ N, 0 < Re λ < 1.

Hence

Λε(T ) =
∪
n∈N

D(
1

n
; ε) ∪D(0; ε) =

∪
n∈N

Λε(Tn) ∪ {λ ∈ C : sup
n∈N

∥(λIn − Tn)
−1∥ =

1

ε
}.

The following example is based on the example given in Problem 98 in [6].

Example 4.11. Let X = l1(N) and let T ∈ B(X) be the weighted unilateral shift
operator with weights given by the sequence {1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0 · · · }.
l1 can be expressed as the direct sum

C2 ⊕ C3 ⊕ · · · ,
where each Cn is endowed with the 1-norm and the direct sum is also endowed
with the 1-norm. Then T can be expressed as the direct sum[

0 0
1 0

]
⊕

 0 0 0
1 0 0
0 1 0

⊕ · · · .

Let Tn ∈ B(Cn+1) be the n-th term in the direct sum. Then the following can be

computed: σ(Tn) = {0} ∀n, and ∥(λ−Tn)
−1∥ =

n+1∑
k=1

1
|λ|k ∀n. Hence σ(T ) = D(0; 1)

and

Λε(Tn) = {λ ∈ C : |λ|n+1−ε(|λ|n+· · ·+|λ|+1) ≤ 0} = {λ ∈ C : |λ|n+1 ≤ ε(
|λ|n+1 − 1

|λ| − 1
)}.

We also see that ∥(λ− T )−1∥ = 1
|λ|−1

for |λ| > 1, and hence Λε(T ) = D(0; 1 + ε).

For |λ| > 1,

Λε(Tn) = {λ ∈ C : |λ|n+1 ≤ ε(
|λ|n+1 − 1

|λ| − 1
)} = {λ ∈ C : |λ|n+2−(1+ε)|λ|n+1+ε ≤ 0}.

Now, if |λ| ≥ 1+ε, then |λ|n+2−(1+ε)|λ|n+1+1 ≥ |λ|n+2−|λ||λ|n+1+ε = ε > 0 ∀n.
Hence for each n, Λε(Tn) ⊊ D(0; 1 + ε). Thus we get

Λε(T ) =
∪
n∈N

Λε(Tn) ∪ {λ ∈ C : sup
n∈N

∥(λIn − Tn)
−1∥ =

1

ε
}.

In fact, in this case, it is true that

Λε(T ) =
∪
n∈N

Λε(Tn).

This is because the space l1(N) is complex uniformly convex, hence Λε(T ) = Λ∗
ε(T )

(see [13] and [14]).
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Remark 4.12. Let u be a non-trivial idempotent in a Banach algebra A. Any
x ∈ A can be represented as

x =

[
a b
c d

]
u

where a = uxu, b = ux(1 − u), c = (1 − u)xu and d = (1 − u)x(1 − u). The
representation is in diagonal form precisely when ux = xu.

In [8], the author states that if an element x of a Banach algebra has the
diagonal representation

x =

[
a 0
0 b

]
u

with respect to the idempotent u, then ∥x∥ can be defined as max{∥a∥, ∥b∥}.
However, this norm is not equal to the original norm on A in general.

Consider Example 3.9. Here, A = (C2×2, ∥ · ∥1) and u = 1
2

[
1 1
1 1

]
. It can be

seen that for a as in the example and λ = i, ∥(λ − a)−1∥ = 1 which is strictly
greater than the maximum of ∥u(λ− a)−1∥ and |(1− u)(λ− a)−1∥ both of which
are equal to 1√

2
.

The author of [8] discusses the the (p, q)-generalised outer inverse of a ∈ A and
further defines the (p, q)− ε pseudospectrum of a ∈ A.

Let a ∈ A and p, q ∈ A be idempotent elements. An element b ∈ A satisfying
bab = b, ba = p and 1−ab = q will be called the (p, q)-generalised outer inverse of

a and denoted by a
(2)
p,q. The set of elements with (p, q)-outer generalised inverses

is denoted by A
(2)
p,q.

The (p, q)− ε pseudospectrum of a ∈ A is defined as

Λ(p,q)−ε(a) = {λ ∈ C : λ− a /∈ A(2)
p,q or ∥(λ− a)(2)p,q∥ ≥ 1

ε
}.

It is shown that for u ∈ A, an idempotent and a ∈ A such that ua = au,
if p1, q1 idempotents in uAu and p2, q2 are idempotents in (1 − u)A(1 − u) and
p = p1 + p2, q = q1 + q2,

Λ(p,q)−ε(A, a) = Λ(p1,q1)−ε(uAu, ua) ∪ Λ(p2,q2)−ε((1− u)A(1− u), (1− u)a). (4.1)

However, this is not true in general. This decomposition occurs if and only if

∥(λ− a)(2)p,q∥ = max {∥(λu− ua)(2)p1,q1
∥, ∥(λ(1− u)− (1− u)a)(2)p2,q2

∥}.

For instance, if the hypotheses of Theorem 3.13 or Theorem 3.14 hold, then we
obtain the decomposition (4.1).
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