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PSEUDOSPECTRUM OF AN ELEMENT OF A BANACH ALGEBRA

ARUNDHATHI KRISHNAN AND S. H. KULKARNI

Submitted to Operators and Matrices

Abstract. The ε -pseudospectrum Λε (a) of an element a of an arbitrary Banach algebra A is
studied. Its relationships with the spectrum and numerical range of a are given. Characteriza-
tions of scalar, Hermitian and Hermitian idempotent elements by means of their pseudospectra
are given. The stability of the pseudospectrum is discussed. It is shown that the pseudospectrum
has no isolated points, and has a finite number of components, each containing an element of the
spectrum of a . Suppose for some ε > 0 and a,b ∈ A, Λε (ax) = Λε (bx) ∀x ∈ A . It is shown
that a = b if:

(i) a is invertible.

(ii) a is Hermitian idempotent.

(iii) a is the product of a Hermitian idempotent and an invertible element.

(iv) A is semisimple and a is the product of an idempotent and an invertible element.

(v) A = B(X) for a Banach space X .

(vi) A is a C∗ -algebra.

(vii) A is a commutative semisimple Banach algebra.

1. Introduction

Let A be a complex Banach algebra with unit 1 . For λ ∈C, λ .1 is identified with
λ . Let Inv(A)= {x∈A : x is invertible in A} and Sing(A)= {x∈A : x is not invertible in A}.
The spectrum of an element a ∈ A is defined as:

σ(a) := {λ ∈ C : λ −a ∈ Sing(A)}.

The spectral radius of an element a is defined as:

r(a) := sup{|λ | : λ ∈ σ(a)}.

The complement of the spectrum of an element a is called the resolvent set and is
denoted by ρ(a) . The spectra of elements of Banach algebras can be used to study the
properties of the elements. There are generalizations of the spectrum such as Ransford’s
generalized spectrum [22], ε -pseudospectrum [29] and the ε -condition spectrum [16].
The latter two depend on the norm, and both contain the spectrum as a subset.

Mathematics subject classification (2010): 47A10; 46H05; 47A12.
Keywords and phrases: Banach algebra; Hermitian; Idempotent; Numerical range; Pseudospectrum;

Semisimple; Spectrum.

1



In this note, we attempt to present a systematic study of the pseudospectrum of
an element in a Banach algebra. While the ε -pseudospectra of matrices (with the Eu-
clidean norm) and operators on (infinite-dimensional) Hilbert spaces and Banach spaces
have been studied, in the literature, the authors have not come across any systematic ac-
count about the ε -pseudospectrum of an element of an arbitrary Banach algebra. From
this point of view, all the results given in this note are technically new. Some results
and also their proofs are very similar to the ones available in the literature for matri-
ces and operators (for example, Theorem 2.3). In some other cases (such as Theorem
3.11), the result is similar, but our proof is different. Lastly, there are some completely
new results (Theorem 3.15, Theorem 6.3) in the sense that nothing similar exists in the
literature even for matrices and operators.

Some of the basic properties of pseudospectra of matrices and operators on Hilbert
spaces also hold for the pseudospectra of elements of an arbitrary Banach algebra, while
some exceptions exist. Simple proofs of these properties and examples are given in
Section 2.

The pseudospectra of elements of a Banach algebra can also provide some infor-
mation about the elements. For instance, the pseudospectra of operators on a Hilbert
space can be used to characterize self-adjoint operators, projections and so on (see [7]
and [8]). This is extended to characterizations of scalar elements, Hermitian elements
and Hermitian idempotent elements of a Banach algebra using the ε -pseudospectrum
in Section 3. Theorems about the relationships between the spectrum, pseudospec-
trum and numerical range of an element of an arbitrary Banach algebra are used for
these characterizations. In general, for a Banach algebra A , a ∈ A and ε > 0, the ε -
pseudospectrum of a contains the ε -neighbourhood of the spectrum of a . It is shown
that if it is equal to the ε -neighbourhood of the spectrum for all a ∈ A , then A is
commutative and semisimple (see Theorem 3.15).

Under certain conditions the pseudospectrum has an important property of be-
ing stable under perturbations (See Theorem 4.6). This property is not shared by the
spectrum (see [13]). In Section 4, it is shown that map ε 7→ Λε(a) is always right con-
tinuous. Under additional conditions, the continuity of the ε -pseudospectrum of a ∈ A
with respect to a and ε is proved in Section 4.

Some topological properties of the ε -pseudospectrum are discussed in Section 5.
It is shown that the pseudospectrum of an element of a Banach algebra always has
finitely many components, each of which contains an element of the spectrum. It is
also shown that the pseudospectrum has no isolated points.

In [6] the following question is addressed: If A is a semisimple Banach algebra,
a,b ∈ A and

σ(ax) = σ(bx) ∀x ∈ A, (1)

then under what circumstances is a = b? An analogous question about pseudospectrum
would be: If A is a Banach algebra, a,b ∈ A and for ε > 0,

Λε(ax) = Λε(bx) ∀x ∈ A, (2)

then is a = b? This is addressed in Section 6. It is shown that if (2) holds for some
ε > 0, then (1) holds. Hence the hypothesis (2) is stronger, and it is shown that this
implies a = b in more general cases.
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2. Definition and Elementary Properties

In this section we discuss some elementary properties of the ε -pseudospectrum of
an element of a Banach algebra.

Notation:

Let B(z0;r) := {z ∈ C : |z− z0|< r}, D(z0;r) := {z ∈ C : |z− z0| ≤ r},
Ω+D(0;r) =

⋃
ω∈Ω

D(ω;r) for Ω ⊆ C and d(z,K) = inf{|z− k| : k ∈ K} for any closed

set K ⊆ C .
Let δΩ be the boundary of a set Ω ⊆ C .
Cn×n denotes the space of square matrices of order n and B(X) denotes the set of
bounded linear operators on a Banach space X .

DEFINITION 2.1. Let A be a Banach algebra, a ∈ A and ε > 0.
The ε -pseudospectrum Λε(a) of a is defined by

Λε(a) := {λ ∈ C : ∥(λ −a)−1∥ ≥ ε
−1}

with the convention that ∥(λ −a)−1∥= ∞ if λ −a is not invertible.

The basic reference for pseudospectrum, especially for matrices, is the book [29].
The website [9] <http://www.comlab.ox.ac.uk/pseudospectra> (Pseudospec-
tra Gateway) also contains a lot of material about pseudospectra.

REMARK 2.2. Some authors (such as in [1] and [29]) have defined the following
set as the ε -pseudospectrum of a :

Λ
∗
ε(a) := {λ ∈ C : ∥(λ −a)−1∥> ε

−1}.

There are some significant changes in these two definitions.

1. Λε(a) is a compact subset of C (Theorem 2.3) whereas Λ∗
ε(a) is not.

2. The map ε 7→ Λε(a) is right continuous (Theorem 4.1) but the map ε 7→ Λ∗
ε(a)

is not.

In the case of most of the other results proved in this note about Λε(a) , our meth-
ods can be easily modified to obtain analogous results for Λ∗

ε(a) . In general, Λε(a) is
not the closure of Λ∗

ε(a) . However, this is true in many cases. Section 4 contains some
information about this. One reason given by some authors for accepting Λ∗

ε(a) as the
definition of pseudospectrum is that if T is a bounded operator on a Banach space, then

Λ
∗
ε(T ) =

⋃
∥S∥<ε

σ(T +S).

However, this is not the case for an arbitrary element of a Banach algebra (See
Example 2.5).

A more detailed discussion on these two ways of defining pseudospectrum can be
found in [25].
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The following theorem gives some elementary properties of the pseudospectrum.

THEOREM 2.3. Let A be a Banach algebra, a ∈ A and ε > 0 . Then

1. σ(a) =
⋂

ε>0
Λε(a) .

2. Λε1(a)⊆ Λε2(a)(0 < ε1 < ε2) .

3. Λε(a+λ ) = λ +Λε(a)(λ ∈ C) .

4. Λε(λa) = λΛ ε

|λ |
(a)(λ ∈ C\{0}) .

5. Λε(a)⊆ D(0;∥a∥+ ε) .

6. Λε(a) is a non-empty compact subset of C .

7. Λε(a+b)⊆ Λε+∥b∥(a)(b ∈ A) .

8. σ(a+b)⊆ Λε(a)(b ∈ A,∥b∥ ≤ ε) , that is,
⋃

∥b∥≤ε

σ(a+b)⊆ Λε(a) .

9. Λε(a)+D(0;δ )⊆ Λε+δ (a)(δ > 0) .

Proof. Analogues of (1),(2), (4), (5) and (7) for Λ∗
ε(a) are proved in [1] and (8) is

proved in [12]. Our proofs are similar to these proofs. These are included for the sake
of completeness.

1. Let λ ∈σ(a) . Then λ −a is not invertible, hence by the convention in Definition
2.1, ∥(λ −a)−1∥ = ∞ > 1

ε
∀ε > 0. On the other hand, if λ /∈ σ(a) , then λ −a

is invertible. Hence ∃ε0 > 0 such that ∥(λ −a)−1∥< 1
ε0

. Thus λ /∈ Λε0(a) .

2. Let 0 < ε1 < ε2 , and suppose λ ∈ Λε1(a) . If λ − a is not invertible, then λ ∈
σ(a)⊆Λε2(a) . Otherwise λ −a is invertible and ∥(λ −a)−1∥≥ 1

ε1
> 1

ε2
. Hence

λ ∈ Λε2(a) .

3. Let z ∈ Λε(a+λ ) . Then ∥((z−λ )− a)−1∥ = ∥(z− (λ + a))−1∥ ≥ 1
ε

. Hence
z−λ ∈ Λε(a) , that is, z ∈ λ +Λε(a) . The reverse inclusion follows similarly.

4. Let z ∈ Λε(λa) . Then ∥( z
λ
− a)−1∥ = |λ |∥(z − λa)−1∥ ≥ |λ |

ε
. Hence z

λ
∈

Λ ε

|λ |
(a) , that is, z ∈ λΛ ε

|λ |
(a) . The reverse inclusion follows similarly.

5. Suppose |z|> ∥a∥+ ε > ∥a∥ . Then z−a is invertible and

∥(z−a)−1∥ ≤ 1
|z|−∥a∥

<
1
ε
.

Hence z /∈ Λε(a) .

6. By (5), Λε(a) is bounded. It is closed by the continuity of the norm and resolvent
function. Hence it is compact. It is non-empty because it contains σ(a) .
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7. Let a,b ∈ A and ε > 0. Suppose λ /∈ Λε+∥b∥(a) . Then λ − a is invertible and
∥(λ −a)−1∥< 1

ε+∥b∥ . Hence

∥(λ −a−b)− (λ −a)∥= ∥b∥< ε +∥b∥< ∥(λ −a)−1∥−1
.

Hence λ −a−b is invertible, and moreover,

∥(λ −a−b)−1 − (λ −a)−1∥= ∥(λ −a−b)−1((λ −a)− (λ −a−b))(λ −a)−1∥

≤ ∥b∥∥(λ −a−b)−1∥
ε +∥b∥

.

Thus

∥(λ −a−b)−1∥ ≤ ∥(λ −a−b)−1 − (λ −a)−1∥+∥(λ −a)−1∥

<
∥b∥∥(λ −a−b)−1∥

ε +∥b∥
+

1
ε +∥b∥

.

Thus we get ∥(λ −a−b)−1∥< 1
ε
. Hence λ /∈ Λε(a+b) .

8. Let a,b ∈ A,ε > 0,∥b∥ ≤ ε . Let λ ∈ σ(a+b) . Then λ −a−b is not invertible.
If λ ∈ σ(a) , we are done. Otherwise, λ − a is invertible. Now, λ − a− b =
(λ −a)(1− (λ −a)−1b) . Since λ −a−b is not invertible, (1− (λ −a)−1b) is
not invertible, hence ∥(λ −a)−1b∥ ≥ 1. Thus

1 ≤ ∥(λ −a)−1b∥ ≤ ∥(λ −a)−1∥∥b∥,

which gives

∥(λ −a)−1∥ ≥ 1
∥b∥

≥ 1
ε
.

9. Let z∈Λε(a) and λ ∈C with |λ | ≤ δ . If z∈σ(a) , then (z+λ ) ∈ σ(a+λ )⊆ Λδ (a) ,
by (8). By (2), Λδ (a)⊆ Λε+δ (a) .

Suppose z ∈ Λε(a)\σ(a) . Let x = (z−a)−1

∥(z−a)−1∥ . Then

∥((z+λ )−a)x∥ ≤ ∥(z−a)x∥+ |λ |∥x∥ ≤ ε +δ .

If z+λ ∈ σ(a) , then z+λ ∈ Λε+δ (a) . If z+λ −a is invertible, then

1 = ∥x∥= ∥(z+λ −a)−1(z+λ −a)x∥ ≤ (ε +δ )∥(z+λ −a)−1∥.

Hence z+λ ∈ Λε+δ (a) . □

REMARK 2.4. The inclusion in (8) of Theorem 2.3 can be proper. Several exam-
ples have been given in the case of B(X) , where X is a Banach space, in [25] and [26].
Also consider the following example:

5



EXAMPLE 2.5. Let A= {a∈C2×2 : a=
[

α β

0 α

]
} with norm given by ∥a∥= |α|+ |β | .

Then A is a Banach algebra. Let a =

[
0 1
0 0

]
. Then it can be verified that

⋃
∥b∥≤1

σ(a+b) = D(0;1)

which is properly contained in

Λ1(a) = {λ ∈ C : |λ |(|λ |−1)≤ 1}= D(0;(
1+

√
5

2
)).

It can be seen that for this example,⋃
∥b∥<1

σ(a+b) = B(0;1)

which is properly contained in

Λ
∗
1(a) = {λ ∈ C : |λ |(|λ |−1)< 1}= B(0;(

1+
√

5
2

)).

Next, we consider the question of reverse inclusion in (8) of Theorem 2.3.

LEMMA 2.6. Suppose A is a complex Banach algebra with the following prop-
erty:

∀a ∈ Inv(A), ∃b ∈ Sing(A) such that ∥a−b∥= 1
∥a−1∥

. (3)

Then ∀a ∈ A and λ ∈ Λε(a), ∃b ∈ A such that ∥b∥ ≤ ε and λ ∈ σ(a+b) .

Proof. If λ ∈ σ(a) , take b = 0. If λ ∈ Λε(a)\σ(a), ∃c ∈ Sing(A) such that

∥λ −a− c∥= 1
∥(λ −a)−1∥

.

Let b = λ −a− c . Then

∥b∥= 1
∥(λ −a)−1∥

≤ ε.

Also λ −a−b = c ∈ Sing(A) , hence λ ∈ σ(a+b) . □

COROLLARY 2.7. Let A be a complex Banach algebra satisfying the hypothesis
of Lemma 2.6 and a ∈ A. Then

λ ∈ Λε(a)⇔∃b ∈ A with ∥b∥ ≤ ε such that λ ∈ σ(a+b).

Thus
Λε(a) =

⋃
∥b∥≤ε

σ(a+b).
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Proof. Follows from (8) of Theorem 2.3 and Lemma 2.6. □

REMARK 2.8. The above equality has been proved directly in the case that A is a
C∗ algebra in Theorem 3.27 of [12].

Examples of Banach algebras that satisfy (3) can be found in Examples 2.18, 2.19
and 2.20 in [16]. These include the algebras C(X) , for a compact Hausdorff space
X , and Cn×n∀n ∈ N . In fact, all C∗ algebras satisfy the hypothesis as given below.
Uniform algebras can also be seen to satisfy (3).

THEOREM 2.9. If A is a C∗ algebra, then (3) holds.

Proof. Suppose ∃a ∈ Inv(A) such that ∀b ∈ A , with ∥b−a∥= 1
∥a−1∥ , b ∈ Inv(A) .

Let c = b−a . Hence

∀c ∈ A with ∥c∥ ≤ 1
∥a−1∥

,a+ c ∈ Inv(A). (4)

Since a is invertible, a∗ is also invertible. Let

c = λ (a∗)−1, with 0 < |λ | ≤ 1
(∥a−1∥)2 . (5)

Since ∥c∥ ≤ 1
∥a−1∥ , a+λ (a∗)−1 is invertible for all λ as in (5). Now

a+λ (a∗)−1 = λa(
1
λ
+a−1(a∗)−1)

⇒ (
1
λ
+a−1(a∗)−1) is invertible ∀λ as in (5).

Hence
∥(a)−1∥2 = ∥(a∗)−1a−1∥= r((a∗)−1a−1)< ∥a−1∥2

⇒∥a−1∥< ∥a−1∥, a contradiction.

□
Next, we consider an example of a Banach algebra in which (3) does not hold.

EXAMPLE 2.10. Consider A as in Example 2.5. Let a =

[
1 1
0 1

]
. Then we claim

that
b ∈ A, ∥a−b∥= 1

∥a−1∥
⇒ b ∈ Inv(A).

For the given a , a−1 =

[
1 −1
0 1

]
and ∥a−1∥ = 2. Any b ∈ A is of the form

[
α β

0 α

]
and b is invertible iff α ̸= 0. Then ∥a− b∥ = |1−α|+ |1−β | . If ∥a− b∥ = 1

∥a−1∥ ,

i.e., |1−α|+ |1−β |= 1
2 , then α ̸= 0. Hence b is invertible.
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3. Pseudospectrum and Numerical Range

In this section the relationships between the ε -pseudospectrum, the spectrum and
the numerical range of an element of a Banach algebra are given. Scalar, Hermi-
tian and idempotent elements of a Banach algebra are characterized using their ε -
pseudospectra.

DEFINITION 3.1. Let A be a Banach algebra and a ∈ A . The numerical range
(see Definition 1.10.1 in [3]) of a is defined by

V (a) := { f (a) : f ∈ A′, f (1) = 1,∥ f∥= 1},

where A′ is the dual space of A .

DEFINITION 3.2. Let A be a Banach algebra and a ∈ A . Then a is said to be
Hermitian if V (a)⊆ R .

DEFINITION 3.3. Let X be a Banach space and T ∈ B(X) . Let X
′

be the dual
space of X . The spatial numerical range of T is defined by

W (T ) = { f (T x) : f ∈ X
′
,∥ f∥= f (x) = 1,∥x∥= 1}.

For an operator T on a Banach space X , the spatial numerical range W (T ) and
the numerical range V (T ) , where T is regarded as an element of the Banach algebra
B(X) , are related by the following:

CoW (T ) =V (T )

where CoE denotes the closed convex hull of E ⊆ C . See Theorem 9.4 in [2].
The following theorems establish the relationships between the spectrum, the ε -

pseudospectrum and the numerical range of an element of a Banach algebra. The in-
equalities in the following theorem have been known for operators on a Banach space
(See Theorem 1.3.9 of [19] and Problem 6.16 of [15]). Here those are proved for an
element of an arbitrary Banach algebra.

THEOREM 3.4. Let A be a Banach algebra, a ∈ A and ε > 0 . Then

d(λ ,V (a))≤ 1
∥(λ −a)−1∥

≤ d(λ ,σ(a)) ∀λ ∈ C\σ(a). (6)

Thus
σ(a)+D(0;ε)⊆ Λε(a)⊆V (a)+D(0;ε). (7)

Proof. For the second inequality in (6), we have for λ /∈ σ(a),

d(λ ,σ(a)) =
1

r((λ −a)−1)
≥ 1

∥(λ −a)−1∥
.

8



For the first inequality in (6), for λ /∈ σ(a), by the Hahn-Banach theorem,

∃ f ∈ A′ such that ∥ f∥= 1, and f ((λ −a)−1) = ∥(λ −a)−1∥.

Define g : A → C by g(x) = ∥(λ −a)−1∥−1 f (x(λ −a)−1) . Then g is linear, g(1) = 1
and ∥g∥ ≤ 1 ⇒∥g∥= 1. Hence g(a) ∈V (a) . Now

d(λ ,V (a))≤ |λ −g(a)|= |g(λ −a)|= ∥(λ −a)−1∥−1| f (1)| ≤ ∥(λ −a)−1∥−1.

□
Next we consider the question of equality in the first inclusion of (7).

DEFINITION 3.5. Let A be a Banach algebra and a ∈ A . We define a to be of
G1 -class if

∥(z−a)−1∥= 1
d(z,σ(a))

∀z ∈ C\σ(a). (8)

The following lemma is elementary.

LEMMA 3.6. Let A be a Banach algebra and a ∈ A. Then

Λε(a) = σ(a)+D(0;ε) ∀ε > 0 (9)

iff a is of G1 -class.

Proof. Suppose (9) holds. Let z /∈ σ(a) . Then d(z,σ(a)) > 0. For every ε

satisyfing 0 < ε < d(z,σ(a)) , by (9), z /∈ Λε(a) . Thus

∥(z−a)−1∥< 1
ε

∀z /∈ σ(a), 0 < ε < d(z,σ(a)).

Hence it follows that ∥(z−a)−1∥ ≤ 1
d(z,σ(a)) . By (6), we already have

1
d(z,σ(a))

≤ ∥(z−a)−1∥.

The converse implication is trivial. □

REMARK 3.7. The idea of G1 -class is due to Putnam who defined it for operators
on Hilbert spaces. See [20] and [21]. It is known that the G1 -class properly contains
the class of seminormal operators (T T ∗ ≤ T ∗T or T ∗T ≤ T T ∗ ) and this class properly
contains the class of normal operators. Using the Gelfand- Naimark theorem, we can
make similar statements about elements in a C∗ algebra. In the finite dimensional
case, G1 operators are normal (see [28]). Hence every operator on a finite dimensional
Hilbert space satisfying (9) is normal. Also it is easy to see that every element in a
uniform algebra is of G1 -class.
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REMARK 3.8. The equivalent of Lemma 3.6 for Λ∗
ε(a) is: Let A be a Banach

algebra and a ∈ A . Then

Λ
∗
ε(a) = σ(a)+B(0;ε) ∀ε > 0 (10)

iff a is of G1 -class.

EXAMPLE 3.9. By Theorem 2.2 of [29], if

Λ
∗
ε(a) = σ(a)+B(0;ε) (11)

holds for every ε > 0, for a ∈ A = Cn×n(n ∈ N) with ∥ · ∥ = ∥ · ∥2 , then a is normal.
This has been incorrectly interpreted in Example 2.2 in [7], where the authors have
given an example of a matrix for which (11) holds for a particular ε > 0. In this
example, ε = 2, and the matrix is taken to be a = a1 ⊕a2 , where a1 = diag(1,ω,ω2)

and a2 =

[
0 β

0 0

]
where ω = e

2πi
3 and β > 0 satisfies

Λ
∗
ε(a2) = {z ∈ C : |z|<

√
ε(ε +β )} ⊆ B(0;

√
13+1)

2
).

a is not normal, or even hyponormal. It can be shown that (11) does not hold for some
ε > 0. For example, let β = 0.5. Note that for every ε > 0,

Λ
∗
ε(a) = Λ

∗
ε(a1)∪Λ

∗
ε(a2) = B(1;ε)∪B(ω;ε)∪B(ω2;ε)∪B(0;

√
ε(ε +β )),

and
σ(a)+B(0;ε) = B(1;ε)∪B(ω;ε)∪B(ω2;ε)∪B(0;ε)

When ε = 2, the last of the four discs in Λ∗
2(a) is contained in the union of the first

three discs, hence (11) is satisfied. On the other hand, when ε = 0.3, all four discs are
disjoint and B(0;

√
ε(ε +β )) properly contains B(0;ε). Hence (11) is not satisfied.

Hence, this example does not show that Theorem 2.2 of [29] is false.

EXAMPLE 3.10. See Remark 5.5 in [17]. Consider the right shift operator R on
l2(N) . It is not normal but Λε(R) = σ(R) + D(0;ε) = D(0;1 + ε) ∀ε > 0. R is,
however, a hyponormal operator, i.e., T T ∗ ≤ T ∗T .

The following theorem shows that the numerical range V (a) of a is determined
by certain closed half-planes related to the pseudospectrum Λε(a) . This result has been
stated in Theorem 17.5 of [29] for operators on a Banach space. Our proof is different.

THEOREM 3.11. Let A be a Banach algebra, a∈A and ε > 0 . Let H be a closed
half-plane in C such that

Λε(a)⊆ H +D(0;ε) ∀ε > 0. (12)

Then V (a)⊆ H .
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Proof.
The given hypothesis implies that

∥(z−a)−1∥ ≤ 1
d(z,H)

∀z /∈ H.

The proof of this assertion is similar to the proof of Lemma 3.6 and hence it is
omitted.

It also follows from the first inclusion in (7) that σ(a) ⊆ H . We can assume
without loss of generality that H = {z ∈ C : Re z ≤ 0} , for we can then take suitable
translations and rotations to prove the theorem in the general case.

We thus have
∥(z−a)−1∥ ≤ 1

Re z
, Re z > 0. (13)

What follows is a particular case of a classical result of Hille and Yosida. See
Theorem 13.37 in [23]. Let S(ε) = (1− εa)−1. Then εaS(ε) = S(ε)−1 ∀ε > 0, and
lim
ε→0

S(ε)= 1. For t ≥ 0, let T (t,ε)= exp(taS(ε))= exp( t
ε
(S(ε)−1))= e

−t
ε exp( t

ε
S(ε)).

Hence ∥T (t,ε)∥≤ e
−t
ε e

t
ε
∥S(ε)∥ ≤ 1 ∀ε > 0 ,∀t ≥ 0, for ∥S(ε)∥= 1

ε
∥( 1

ε
−a)−1∥≤ 1

ε
ε =

1. Hence lim
ε→0

∥T (t,ε)∥ ≤ 1 ∀t ≥ 0, i.e. ∥exp ta∥ ≤ 1 ∀t ≥ 0. By Corollary 1.10.13 in

[3], Re z ≤ 0 ∀z ∈V (a) , that is, V (a)⊆ H . □
The following corollary gives a characterization of Hermitian elements of a Ba-

nach algebra in terms of the ε -pseudospectrum.

COROLLARY 3.12. Let A be a Banach algebra and a ∈ A. Then a is Hermitian
iff

Λε(a)⊆ {z ∈ C : |Im z| ≤ ε} ∀ε > 0. (14)

Proof. If a is Hermitian, by definition, V (a)⊆R . By the second inclusion in (7),
∀ε > 0,

Λε(a)⊆V (a)+D(0;ε)⊆ R+D(0;ε)⊆ {z ∈ C : |Im z| ≤ ε}.

Next, suppose (14) holds. Now

Λε(a)⊆ {z ∈ C : |Im z| ≤ ε} ∀ε > 0.

⇒ Λε(a)⊆ closed upper half plane +D(0;ε), ∀ε > 0,

and
Λε(a)⊆ closed lower half plane +D(0;ε), ∀ε > 0.

By Theorem 3.11,

V (a)⊆ closed upper half plane∩ closed lower half plane ⇒V (a)⊆ R.

Hence a is Hermitian. □
The numerical range of an element of a Banach algebra is a compact convex subset

of C containing its spectrum, and hence it also contains the convex hull of the spectrum.
In some cases, as given below, equality holds.
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COROLLARY 3.13. Let A be a Banach algebra and a ∈ A. Suppose a is of G1 -
class. Then V (a) = Co σ(a) , the convex hull of σ(a) , and ∥a∥ ≤ er(a) .

Proof. We first observe that since σ(a) is a compact subset of C , so is Co σ(a) .
Hence Co σ(a) is closed, and equal to the intersection of all closed half-planes con-
taining σ(a) . Also, Co σ(a)⊆V (a) , since V (a) itself is convex and σ(a)⊆V (a) .

By the hypothesis, Λε(a) = σ(a) +D(0;ε) ∀ε > 0. Let H be any closed half
plane such that σ(a) ⊆ H . Then Λε(a) ⊆ H +D(0;ε) ∀ε > 0. By Theorem 3.11,
V (a)⊆ H . Hence V (a)⊆ Co σ(a) .

Next, r(a) = sup{|λ | : λ ∈ σ(a)} = sup{|λ | : λ ∈ V (a)} ≥ 1
e∥a∥ by Theorem

1.10.14 of [3]. □

REMARK 3.14. A bounded operator T on a Hilbert space H is said to be convex-
oid (see [13]) if the closure of its spatial numerical range W (T ) is equal to the convex
hull of the spectrum Co σ(T ) . The numerical range of T ∈ B(H) is convex, and it
has already been observed that for a Banach space operator CoW (T ) = V (T ) . Hence
in the case of A = B(H) , the above theorem shows that a G1 operator is a convexoid
operator (See [18]).

THEOREM 3.15. Let A be a Banach algebra such that every element of A is of
G1 -class. Then A is commutative, semisimple and hence isomorphic and homeomor-
phic to a function algebra.

Proof. By Corollary 3.13, ∥a∥ ≤ er(a) ∀a ∈ A . Hence A is commutative by a
theorem of Hirschfeld and Zelazko (See Corollary 2.15.7 of [3]). A is semisimple
because ∥a∥ ≤ er(a) ∀a ∈ A , that is, the spectral radius is a norm in A . □

The following theorem involves the analytical functional calculus for elements of
a Banach algebra. See [23].

THEOREM 3.16. Let A be a Banach algebra and a ∈ A. Let Ω ⊆ C be an open
neighbourhood of Λε(a) and Γ be a contour that surrounds Λε(a) in Ω . Let f be
analytic in Ω . We recall the definition of f̃ (a) in the analytical functional calculus as

f̃ (a) =
1

2πi

∫
Γ

(z−a)−1 f (z)dz (15)

Then
∥ f̃ (a)∥ ≤ Ml

2πε
(16)

where l = length of Γ and M = sup{| f (z)| : z ∈ Γ} .

Proof. The proof is as in (14.10) of [29], but for an arbitrary Banach algebra ele-
ment.

∥ f̃ (a)∥ ≤ 1
2π

∫
Γ

∥(z−a)−1∥| f (z)||dz| ≤ Ml
2πε

12



since Γ lies outside the interior of Λε(a) . □
The following corollary gives an equivalent condition in terms of the ε -pseudospectrum

for an element of a Banach algebra to be a scalar (i.e. a scalar multiple of the identity).

COROLLARY 3.17. Let A be a Banach algebra, a ∈ A and µ ∈ C . Then

a = µ ⇔ Λε(a) = D(µ,ε) ∀ε > 0.

Proof. If a = µ , it is trivial to see that Λε(A) = D(µ,ε) ∀ε > 0. For the con-
verse part, by (3) of Theorem 2.3, we may assume that µ = 0. Let f (z) = z and
Γ = {z ∈ C : |z|= ε} . Then, with the notations of Theorem 3.16, M = ε and l = 2πε .
Hence by Theorem 3.16, ∥a∥ ≤ ε . Since this is true ∀ε > 0, a = 0 = µ .

An alternate proof is as follows: Suppose Λε(a) = D(0;ε) ∀ε > 0. By the first
inclusion in (7), σ(a) = {0} . Hence Λε(a) = σ(a)+D(0;ε) ∀ε > 0. As in Corollary
3.13, we get V (a) = Co σ(a) = {0} . By Corollary 1.10.14 in [3], a = 0. □

The following corollary gives a characterization of Hermitian idempotent elements
of a Banach algebra in terms of the ε -pseudospectrum.

COROLLARY 3.18. Let A be a Banach algebra, a ∈ A,a ̸= 0 . Then

Λε(a) = D(0;ε)∪D(1;ε) ∀ε > 0 (17)

if and only if a is a non-trivial (a ̸= 0 and a ̸= 1 ) Hermitian idempotent and ∥a∥= 1 .

Proof. Suppose (17) holds. By Corollary 3.12, a is Hermitian. Now, σ(a)⊆ {0,1}.
If σ(a) = {0} , by Theorem 1.10.17 of [3], ∥a∥= r(a) = 0. Similarly, if σ(a) = {1} ,
then σ(a− 1) = {0} , and by Theorem 1.10.17 of [3], a = 1. Hence σ(a) = {0,1} ,
and by Theorem 1.10.17 of [3], ∥a∥ = r(a) = 1. Let ε > 0 be small enough so that
D(0;ε)∩D(1;ε) = /0. Let f (z)= z2−z and Γ= {z∈C : |z|= ε}∪{z∈C : |z−1|= ε} .
Then, with the notations of Theorem 3.16, M ≤ ε(ε +1) and l = 4πε . Hence by The-
orem 3.16, ∥a2 − a∥ = ∥ f̃ (a)∥ ≤ 2ε(ε + 1) for all sufficiently small ε > 0. Hence
a = a2 .

Conversely, suppose a is a non-trivial Hermitian idempotent. Then σ(a) = {0,1}
and for λ ̸= 0,1, (λ − a)−1 = 1

λ
(1 + a

(λ−1) ). Also σ((λ − a)−1) = { 1
λ
, 1

λ−1}. By
Proposition 2 of [27], ∥h+β∥ = r(h+β ) ∀β ∈ C , for Hermitian h ∈ A . It follows
that ∥αh+β∥= r(αh+β )∀α,β ∈ C. Hence

∥(λ −a)−1∥= ∥ 1
λ (λ −1)

a+
1
λ
∥

= r(
1

λ (λ −1)
a+

1
λ
)

= r((λ −a)−1)

= max { 1
|λ |

,
1

|λ −1|
},

and thus (17) holds by Definition 2.1. □
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REMARK 3.19. If a∈A is idempotent, but not Hermitian, then by Corollary 3.18,
(17) does not hold. The following example illustrates this. Consider the Banach alge-
bra A = C2×2 with the induced ∥ · ∥∞ norm (i.e., the operator norm of a when the
underlying space C2 is equipped with the ∥ · ∥∞ norm). It is equal to the maximum

absolute row sum norm. Let a =

[
0 0
1 1

]
. Then a is an idempotent but not Hermitian

(r(a) = 1,∥a∥∞ = 2) . The resolvent norm is given by

∥(λ −a)−1∥∞ = max{ 1
|λ |

,
1

|λ ||λ −1|
+

1
|λ −1|

}, λ ∈ ρ(a).

It can be seen that λ = 2.1 ∈ Λ1(a)\D(0;1)∪D(1;1).

4. Stability

In this section, the stability of the pseudospectrum is discussed. For fixed a ∈ A ,
the map ε 7→ Λε(a) is always right continuous. It is shown that under some conditions,
the ε -pseudospectrum Λε(a) varies continuously with respect to a and ε .

THEOREM 4.1. Let R+ = {x ∈ R : x > 0} and K(C) denote the set of compact
subsets of C equipped with the Hausdorff metric defined as

d(Λ,∆) = max{sup
s∈Λ

d(s,∆),sup
t∈∆

d(t,Λ)}.

Let A be a Banach algebra and a ∈ A. Define the maps Fa,Ka,Ha : R+ → K(C) by:
Fa(ε) = Λε(a) ,
Ha(ε) =

⋃
0<t<ε

Λt(a) and

Ka(ε) =
⋂

s>ε

Λs(a) .

Then

1. Ha(ε)⊆ Fa(ε) =Ka(ε) ∀ε > 0, that is, the map Fa is right continuous ∀ε > 0 .

2. For ε0 > 0 , the following are equivalent:

(a) Fa is discontinuous at ε0 > 0 .

(b) Fa is left discontinuous at ε0 > 0 .

(c) Ha(ε0)⊊ Fa(ε0) .

(d) The level set {λ ∈ C : ∥(λ −a)−1∥= 1
ε0
} contains a non-empty open set.

Proof.

1. By (2) of Theorem 2.3, Λt(a)⊆ Fa(ε), 0< t < ε . Since Fa(ε) =Λε(a) is closed,
it follows that Ha(ε)⊆ Fa(ε) ∀ε > 0.

14



Since Fa(ε)⊆ Λs(a) for ε < s,Fa(ε)⊆ Ka(ε) ∀ε > 0. Let λ ∈ Ka(ε) . Then

∥(λ −a)−1∥ ≥ 1
s

∀s > ε.

Hence
∥(λ −a)−1∥ ≥ 1

ε
, that is, λ ∈ Fa(ε).

Thus Fa(ε) = Ka(ε) .

2. (a)⇒ (b) follows from (1) since Fa is a monotonically increasing and right con-
tinuous function.

Suppose (b) holds, i.e., suppose Fa is left discontinuous at ε0 . Then ∃r > 0 such
that ∀δ > 0, ∃ε > 0 such that ε0 − δ < ε < ε0 and d(Fa(ε),Fa(ε0))≥ r. Then
∃λ0 ∈Fa(ε0) such that B(λ0;r)∩Fa(ε)= /0. Hence B(λ0;r)∩Λt(a) = /0, 0 < t < ε .
Since ε can be arbitrarily close to ε0 , λ0 /∈ Ha(ε0) .

If (c) holds, ∃λ0 ∈ Fa(ε0) and r > 0 such that B(λ0;r)∩
⋃

0<t<ε0

Λt(a) = /0 . Then

∀λ ∈ B(λ0;r),λ /∈ Λt(a), 0 < t < ε0 , i.e.,

∥(λ −a)−1∥< 1
t
, 0 < t < ε0,∀λ ∈ B(λ0;r).

Hence ∥(λ − a)−1∥ ≤ 1
ε0

∀λ ∈ B(λ0;r). Since λ0 ∈ Fa(ε0),∥(λ0 −a)−1∥ ≥ 1
ε0
.

Hence we have ∥(λ0 −a)−1∥= 1
ε0

, and ∥(λ −a)−1∥ ≤ 1
ε0

∀λ ∈ B(λ0;r).

We claim that ∥(λ − a)−1∥ = 1
ε0

∀λ ∈ B(λ0;r). By the Hahn-Banach theorem,
∃φ ∈ A′ such that ∥φ∥ = 1 and φ((λ0 − a)−1) = ∥(λ0 − a)−1∥ = 1

ε0
. Define

f : B(λ0;r)→ C by

f (λ ) = φ((λ −a)−1), λ ∈ B(λ0;r).

Then f is analytic in B(λ0;r) , f (λ0) =
1
ε0

, and ∀λ ∈ B(λ0;r) ,

| f (λ )|= |φ((λ −a)−1)| ≤ ∥φ∥∥(λ −a)−1∥ ≤ 1
ε0
.

Hence f is constant in B(λ0;r) by the maximum modulus principle. Hence

1
ε0

= | f (λ )| ≤ ∥φ∥∥(λ −a)−1∥= ∥(λ −a)−1∥ ∀λ ∈ B(λ0;r).

If (d) holds, ∃λ0 ∈ ρ(a) and r > 0 such that ∥(z−a)−1∥= 1
ε0

∀z ∈ B(λ0;r). In
particular, λ0 ∈Λε0(a) . For δ > 0, let 0< ε0−δ < εδ < ε0 . Then ∀z ∈ B(λ0;r),
∥(z−a)−1∥= 1

ε0
< 1

εδ
. Hence ∀z ∈ B(λ0;r),z /∈ Λεδ

(a) . Thus, ∃r > 0 such that
∀δ > 0, ∃εδ > 0 such that |εδ − ε0|< δ , but d(Λε0(a),Λεδ

(a))≥ r .

□
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REMARK 4.2. The map ε 7→ Λ∗
ε(a) is not right- continuous. This will follow

from Shargorodsky’s example (see [24]) elaborated in Example 4.9 below.

The following theorem shows that continuity of the ε -pseudospectrum of a ∈ A
with respect to ε implies continuity with respect to a as well as joint continuity.

THEOREM 4.3. Let a0 ∈ A and U be an open neighbourhood of a0 . With the
notations as in Theorem 4.1, suppose the map Fa : R+ → K(C) is continuous for each
a ∈ U . Then the pseudospectrum map Λε : U → K(C) is continuous with respect to
the norm on A, ∀ε > 0 . Also the map Λ : R+×U → K(C) defined by Λ(ε,a) = Λε(a)
is continuous with respect to the metric given by d((ε1,a1),(ε2,a2)) = ∥a1 − a2∥+
|ε1 − ε2| .

Proof. Given ε > 0 and a ∈ U , choose δ > 0 such that 0 < δ < ε

2 . Let b ∈ U
and ε ′ > 0 such that ∥a−b∥+ |ε − ε ′|< δ . Let c = b−a . Then ∥c∥< δ −|ε − ε ′|.

Λε−δ (a) = Λε−δ (b− c)

⊆ Λε−δ+∥c∥(b)

⊆ Λε ′(b) (∵ ε −δ +∥c∥< ε −|ε − ε
′| ≤ ε

′)

= Λε ′(a+ c)⊆ Λε ′+∥c∥(a)⊆ Λε+δ (a) (∵ ε
′+∥c∥< ε

′+δ −|ε − ε
′| ≤ ε +δ ).

Thus we have shown:
Λε−δ (a)⊆ Λε ′(b)⊆ Λε+δ (a).

Hence
d(Λε(a),Λε ′(b))≤ d(Λε−δ (a),Λε+δ (a))

By the hypothesis, d(Λε−δ (a),Λε+δ (a))→ 0 as δ → 0. Hence the map Λ is jointly
continuous in ε and a , and hence also continuous separately in a , i.e. the map
Λε : U → K(C) is continuous. □

We next see a continuity result that uses the right continuity of the map ε 7→Λε(a) .

THEOREM 4.4. Let A be a Banach algebra. Let ε > 0 and εn ∈R+ be such that
εn ≥ ε ∀n, and εn → ε . Let a ∈ A, and an ∈ A be such that Λε(a) ⊆ Λε(an) ∀n and
∥an −a∥→ 0 . Then d(Λεn(an),Λε(a))→ 0 as n → ∞ .

Proof. Let bn = a−an ∀n ∈ N . Then

Λε(a)⊆ Λε(an)⊆ Λεn(an) = Λεn(a−bn)⊆ Λεn+∥bn∥(a).

Hence
d(Λε(a),Λεn(an))≤ d(Λε(a),Λεn+∥bn∥(a))→ 0

as n → ∞ by the right continuity of the map ε 7→ Λε(a) . □
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DEFINITION 4.5. A Banach space X is said to be complex uniformly convex if
for every ε > 0, ∃δ > 0 such that

x,y ∈ X ,∥y∥ ≥ ε and ∥x+ζ y∥ ≤ 1 ∀ζ ∈ C with |ζ | ≤ 1 ⇒∥x∥ ≤ 1−δ .

Note that all uniformly convex spaces are complex uniformly convex. Thus Hilbert
spaces and Lp spaces with 1 < p < ∞ are complex uniformly convex. It is known
that L1 is complex uniformly convex, though not uniformly convex. Also L∞ is not
complex uniformly convex, but (L∞)′ is (see [24]).

The next theorem shows that under some conditions, the ε -pseudospectrum is
stable under perturbations. As mentioned in the Introduction, this is not the case with
the spectrum.

THEOREM 4.6. Let A be a Banach algebra.

1. For a fixed a ∈ A, the map Fa , which sends ε > 0 to the ε -pseudospectrum of a
in C , is continuous with respect to the usual Euclidean metric in the domain and
the Hausdorff metric in the codomain if one of the following holds:

(a) The resolvent set ρ(a) is a connected subset of C .

(b) A = B(X) , X a Banach space such that X or X ′ is complex uniformly
convex. In particular, A may be B(H) , for a Hilbert space H .

2. If A = B(X) where X or X ′ is complex uniformly convex, then for fixed ε > 0 ,
the map Λε , which sends an element T ∈ B(X) to its ε -pseudospectrum in C ,
is continuous with respect to the norm in the domain and the Hausdorff metric in
the codomain.

3. If A = B(X) is as in (2), then the map Λ , which sends a positive number ε and
an element T ∈ B(X) to the ε -pseudospectrum of T in C , is also continuous
with respect to the metric

d((ε1,T1),(ε2,T2)) = |ε1 − ε2|+∥T1 −T2∥

in the domain and the Hausdorff metric in the co-domain.

Proof. It was proved by Globevnik (see Proposition 1 of [11]) that in any Banach
algebra, the resolvent norm cannot be constant on an open subset of the unbounded
component of the resolvent set. In particular, if ρ(a) is a connected subset of C , then
the resolvent norm cannot be constant on any open subset of ρ(a) . This proves (1(a))
by Theorem 4.1.

It is proved in [11] and [24] that the resolvent norm cannot be constant on any
open subset of ρ(a) , if a is a bounded linear operator on a Banach space X , such that
X or X ′ is complex uniformly convex. Hence (1(b)) is true by Theorem 4.1. (2) and
(3) follow from (1(b)) and Theorem 4.3. □
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REMARK 4.7. The fact that the resolvent set of an operator on a Hilbert space can-
not be constant on an open set was perhaps first used to prove a convergence theorem
for pseudospectra in Proposition 6.2 of [4]. Also see Proposition 4.2 in [5]. The fol-
lowing assertion about convergence of pseudospectra in the Haussdorf metric is proved
in Theorem 4.4 of [14]. Suppose {Tn} ⊆ B(H) , for a Hilbert space H , and suppose
∥Tn −T∥→ 0, for T ∈ B(H) . Let ε > 0. Then d(Λ∗

ε(Tn),Λ
∗
ε(T ))→ 0 as n → ∞ .

REMARK 4.8. Let T be a bounded operator on a Banach space X . Theorem 4.6
shows that if T is a compact operator, then the map ε 7→ Λε(T ) is continuous because
ρ(T ) is connected. In particular, if X is a finite dimensional space, then this happens
for all T ∈ B(X) , consequently the map (ε,T ) 7→ Λε(T ) is jointly continuous in T and
ε . If X is a Hilbert space, or if either X or X ′ is a complex uniformly convex Banach
space, then the map is jointly continuous. In particular, if X = Lp , for 1 ≤ p ≤ ∞ , then
the map is continuous.

In [24], the author has constructed an example of a bounded operator on a Banach
space X (where neither X nor X ′ is complex uniformly convex) such that the norm
of its resolvent is constant on an open subset of the resolvent set. Hence in this case
the pseudospectrum map has a jump discontinuity. Also, the map a 7→ Λε(a) has a
discontinuity. (See Example 4.9 below).

In Proposition 2.7 of [8], in the case that T is a bounded operator on a Hilbert
space, the authors have used the following inequality without any proof or justification:

d(Λε−δ (T ),Λε+δ (T ))≤ 2δ .

They have remarked that their “proof” also works if X is taken to be a Banach space.
This, however, is not true, in view of the example in [24].

In general, for a fixed ε > 0, the map a 7→ Λε(a) need not be continuous as seen
in the example below.

EXAMPLE 4.9. Let X be the Banach space given in Shargorodsky’s example (see
Theorem 3.1 of [24]). X = l∞(Z) with ∥x∥∗ = |x(0)|+ sup k ̸=0|x(k)|. Let Mi > 2, for
i = 1,2 and M1 ̸= M2 . Consider the operators Ai ∈ B(X) given by the following:

Ai(x)(k) =

{
1

Mi
x(k+1), k = 0,

x(k+1), k ̸= 0.

It is shown in [24] that the resolvent norm ∥(λ −Ai)
−1∥= Mi for λ ∈ C with

|λ |< min { 1
Mi
, 1

2 −
1

Mi
} .

We show that σ(Ai)=T= {z∈C : |z|= 1} . We first show that T⊆ σp(Ai)⊆ σ(Ai) ,
where σp(A) is the eigen or point spectrum of an operator A . It is easily seen that
1 ∈ σp(A) with eigenvector x = (x(k)) , where

x(k) =

{
1, k ≤ 0,
Mi, k > 0.
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In general, µ ∈ T is an eigenvalue with eigenvector x = (x(k)) , where

x(k) =

{
µk, k ≤ 0,
Miµ

k, k > 0.

Hence T⊆ σp(Ai) .
Next, we observe that ∥Ai∥= 1 and ∥A−1

i ∥= Mi . It can be shown that ∀n ∈ N,
∥An

i ∥= 1 and ∥A−n
i ∥= Mi. To show the latter, we observe that

A−n
i (x)(k) =

{
Mix(k−n), k = 1, · · · ,n,
x(k−n), otherwise.

This shows that ∥A−n
i ∥ ≤ Mi ∀n . Choose unit vectors as follows:

xn(k) =

{
1, k = 1−n
0, otherwise.

Then ∥A−n
i xn∥ = Mi . Hence ∥A−n

i ∥ = Mi ∀n . Hence r(A−1
i ) = 1 = r(Ai) , by the

spectral radius formula. This in turn implies that σ(Ai)⊆ T .
Now we compute the pseudospectrum of Ai . We have σ(Ai)+D(0;ε) ⊆ Λε(Ai)

and Λε(Ai) ⊆ D(0;∥Ai∥+ ε) = D(0;1 + ε) . For ε ≥ 1
Mi

and |λ | < 1, we get if

z = (Ai −λ )−1e0 = (∑∞
j=0 λ jA−( j+1)

i )e0, where e0 is the vector given by

e0(k) =

{
1, k = 0,
0, k ̸= 0,

that

z(k) =


0, k ≤ 0,
Mi, k = 1,
Miλ

k−1, k ≥ 2.

Hence ∥z∥∗ = Mi , so that ∥(Ai−λ )−1∥ ≥ Mi ≥ 1
ε

, hence λ ∈ Λε(Ai) . This implies the
following:
For ε ≥ 1

Mi
, Λε(Ai)=D(0;1+ε) , but for ε < 1

Mi
, B(0;min { 1

Mi
, 1

2 −
1

Mi
})∩Λε(Ai) = /0.

Now suppose M2 > M1 . Then ∥A1 −A2∥= 1
M1

− 1
M2

. Let ε = 1
M2

.
Then Λε(A2) = D(0;1+ ε) , but B(0;min { 1

M1
, 1

2 − 1
M1

})∩ Λε(A1) = /0. Hence even
if ∥A1 −A2∥ is arbitrarily small, d(Λε(A1),Λε(A2)) ≥ min { 1

M1
, 1

2 −
1

M1
}. Hence for

fixed ε > 0, the map A 7→ Λε(A) is not continuous in general.

5. Topological Properties

In this section we prove some topological properties of the ε -pseudospectrum of
an element of a Banach algebra. It is shown that just as in the case of the ε -condition
spectrum (see [16]), the ε -pseudospectrum has no isolated points, and that it has a finite
number of components.
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THEOREM 5.1. Let A be a Banach algebra, a ∈ A and ε > 0 . Then the ε -
pseudospectrum Λε(a) of a has no isolated points.

Proof. Suppose Λε(a) has an isolated point λ0 . Then ∃r > 0 such that

∀λ with 0 < |λ −λ0|< r, ∥(λ −a)−1∥< 1
ε
.

Case 1: Suppose λ0 ∈ Λε(a)\σ(a) . By the Hahn-Banach theorem ∃φ ∈ A′ such that

φ((λ0 −a)−1) = ∥(λ0 −a)−1∥ and ∥φ∥= 1.

Define f : C\σ(a)−→C by f (z) = φ((z−a)−1). Then f is analytic in B(λ0,r) . But
∀λ ∈ B(λ0,r) with λ ̸= λ0, | f (λ )| ≤ ∥(λ −a)−1∥< 1

ε
while

f (λ0) = φ((λ0 −a)−1) = ∥(λ0 −a)−1∥ ≥ 1
ε
.

This is a contradiction to the maximum modulus principle.
Case 2: Suppose λ0 ∈ σ(a) . Let λ → λ0 . Then we would have ∥(λ −a)−1∥→ ∞ .
But for λ ∈ B(λ0;r),∥(λ −a)−1∥< 1

ε
, which gives a contradiction.

□

THEOREM 5.2. Let A be a Banach algebra, a ∈ A and ε > 0 . Then the ε -
pseudospectrum Λε(a) of a has a finite number of components and each component of
Λε(a) contains an element of σ(a) .

Proof. For each λ ∈ σ(a), B(λ ;ε) ⊂ Λε(a) . Also, {B(λ ;ε) : λ ∈ σ(a)} is an
open cover for σ(a) . Since σ(a) is compact ∃λ1, , · · · ,λn ∈ σ(a) such that

σ(a)⊂
n⋃

i=1
B(λi;ε) . Since each B(λi;ε) is connected and is a subset of Λε(a) , it

must be contained in some component Ci of Λε(a). Thus we get closed components

C1, · · · ,Cn of Λε(a) such that σ(a)⊂
n⋃

i=1
Ci ⊂Λε(a) . We will prove that

n⋃
i=1

Ci = Λε(a) .

Suppose z0 ∈ Λε(a) \
n⋃

i=1
Ci . Then ∥(z0 − a)−1∥ ≥ 1

ε
. Let r > ∥a∥+ ε . Then

σ(a)⊂ Λε(a)⊂ B(0;r) . Let S := B(0;r) \
n⋃

i=1
Ci . Then S is an open set and z0 ∈ S .

Let S0 be the component of S containing z0 . Then S0 is open. Also, since σ(A) ⊂
n⋃

i=1
Ci, (

n⋃
i=1

Ci)
C ⊂ ρ(a) . Hence S0 ⊂ ρ(a) . Define f : S0 ⊂ ρ(a) −→ R as f (z) =

∥(z−a)−1∥ . By the Hahn-Banach theorem,

∃φ ∈ A′ such that φ((z0 −a)−1) = ∥(z0 −a)−1∥,∥φ∥= 1.

Define g : S −→ C by
g(z) = φ((z−a)−1) ∀z ∈ S.
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Then g is an analytic function on S0 and

|g(z)|= |φ((z−a)−1)| ≤ ∥(z−a)−1∥= f (z) ∀z ∈ S0 ⊂ ρ(a).

Since Λε(a)⊂ B(0;r) which is open, δB(0;r)⊂ Λε(a)C . Hence

f (z) = ∥(z−a)−1∥< 1
ε

∀z ∈ δB(0;r).

We show that for z ∈
n⋃

i=1
δCi, f (z) = 1

ε
. For if f (z)⪈ 1

ε
, ∃ a neighbourhood U of

z such that

f (λ )⪈
1
ε

∀λ ∈U.

But U intersects points outside the pseudospectrum where f (z) = ∥(z− a)−1∥ < 1
ε

.
This gives a contradiction. Hence

f (z) =
1
ε

∀z ∈
n⋃

i=1

δCi.

Now δS0 ⊂ δB(0;r)∪
n⋃

i=1
δCi . Hence if z ∈ δS0, |g(z)| ≤ f (z) ≤ 1

ε
. But z0 is

in the interior of S0 and |g(z0)| = g(z0) = φ((z0 −a)−1) = ∥(z0 − a)−1∥ ≥ 1
ε

. By the
maximum modulus principle, g must be constant on S0 . Hence

∀z ∈ S0, f (z)≥ |g(z)|= g(z0)≥
1
ε
.

Hence S0 ⊂ Λε(a) . By the continuity of g , we get |g(z)| ≥ 1
ε
∀z ∈ S0 . If δS0 ∩

δB(0;r) ̸= /0 we get a contradiction since |g(z)| ≤ f (z) < 1
ε
∀z ∈ δB(0;r) . If δS0 ∩

δCi ̸= /0 for some i , then S0 ∪Ci is a connected subset of Λε(a) . But Ci is a compo-

nent of Λε(a)⇒ S0 ⊂ Ci , a contradiction since S0 ⊂ B(0;r) \
n⋃

i=1
Ci . Hence δS0 = /0 ,

a contradiction. Hence Λε(a) =
n⋃

i=1
Ci , and each Ci contains a point from the spec-

trum. □
Theorem 5.2 helps determine certain properties of a matrix when its ε -pseudospectrum

is known.

COROLLARY 5.3. Let M ∈ Cn×n and ε > 0 .

1. If Λε(M) has n components, then M is diagonalizable.

2. If each of these components is a disc of radius ε and ∥ · ∥ = ∥ · ∥2 then M is
normal.

3. If ∥ · ∥ = ∥ · ∥2 , then Λε(M) = D(µ;ε) iff M = µI . (Compare with Corollary
3.17).
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4. If ∥ ·∥= ∥ ·∥2 , then Λε(M) = D(0;ε)∪D(1;ε) iff M is a non-trivial orthogonal
projection.

Proof. By Theorem 5.2, each component of Λε(M) contains an eigenvalue. Hence
M has n distinct eigenvalues, and is diagonalizable. This proves (1). A proof is also
given in Theorem 2ε of [10]. If, in addition, each component is a disc of radius ε then
by the first inclusion in (7) of Theorem 3.4, each component must be equal to D(λ ;ε)
for λ , an eigenvalue of M . Hence Λε(M) =

⋃
λ∈σ(M)

D(λ ;ε) . Since each disc is maxi-

mally connected in Λε(M) , each disc clearly contains a boundary point of Λε(M) . By
Theorem 2.5 in [7], M is normal. This proves (2). (3) and (4) follow from Corollary
2.6 in [7]. □

6. Determining elements through pseudospectra

In this section, the following question is addressed: If A is a Banach algebra, ε > 0
and a,b ∈ A satisfy

Λε(ax) = Λε(bx) ∀x ∈ A. (18)

Then is a = b? This is shown to be true in some cases.

THEOREM 6.1. Let A be a Banach algebra and a,b ∈ A. Suppose for some
ε0 > 0 ,

Λε0(ax) = Λε0(bx) ∀x ∈ A.

Then ∀ε > 0 ,
Λε(ax) = Λε(bx) ∀x ∈ A.

Hence
σ(ax) = σ(bx) ∀x ∈ A.

Proof. By the hypothesis,

Λε0(tax) = Λε0(tbx) ∀t > 0, ∀x ∈ A.

By (4) of Theorem 2.3,

tΛ ε0
t
(ax) = tΛ ε0

t
(bx) ∀x ∈ A,

i.e.
Λ ε0

t
(ax) = Λ ε0

t
(bx) ∀x ∈ A.

The proof follows by choosing t = ε0
ε

and considering (1) of Theorem 2.3. □

COROLLARY 6.2. Let A be a Banach algebra and a,b ∈ A. Let ε0 > 0 . Suppose

Λε0(ax) = Λε0(bx) ∀x ∈ A.

Then a = b in the following cases:
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1. A = B(X) for a Banach space X .

2. A is semisimple and a is a unit regular element (i.e. the product of an idempotent
and an invertible element).

3. A is a commutative semisimple Banach algebra.

4. A is a C∗ algebra.

Proof. (1) follows from Theorem 6.1 and a comment in Section 2 of [6]. (2), (3)
and (4) follow from Theorem 6.1 and Theorems 2.4, 2.5 and 2.6 in [6]. □

THEOREM 6.3. Let A be a Banach algebra, a,b ∈ A and ε0 > 0 . Suppose

Λε0(ax) = Λε0(bx) ∀x ∈ A.

Then a = b in the following cases:

1. a is invertible.

2. a is Hermitian idempotent.

3. a = hu, where h is Hermitian idempotent and u is invertible.

We note here that in all cases, A is not assumed to be semi-simple.

Proof.

1. By Theorem 6.1, ∀ε > 0,

Λε(ax) = Λε(bx) ∀x ∈ A.

Hence
Λε(ba−1) = Λε(aa−1) = Λε(1) = D(1;ε) ∀ε > 0.

By Corollary 3.17, ba−1 = 1.

2. Suppose a is Hermitian idempotent. Then by Corollary 3.18 it is easy to see that
b is also Hermitian idempotent. Now

Λε(b(1−a)) = Λε(a(1−a)) = Λε(0) = D(0;ε) ∀ε > 0.

Hence by Corollary 3.17, b(1 − a) = 0, i.e., b = ba . Similarly, considering
Λε(a(1− b)) , we obtain a(1− b) = 0, i.e., a = ab . Let h = a− b . Then h
is Hermitian and h2 = (a− b)2 = a2 + b2 − ab− ba = a+ b− a− b = 0. Thus
σ(h) = {0} . Hence by Sinclair’s result ([27]), ∥h∥= r(h) = 0. Thus a = b .

3. Suppose a = hu . Then

Λε(hx) = Λε(au−1x) = Λε(bu−1x) ∀x ∈ A.

Hence by (2), h = bu−1 , thus, b = hu = a .
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□

REMARK 6.4. The hypothesis that a is invertible or Hermitian idempotent (or the
product of a Hermitian idempotent and an invertible element) in Theorem 6.3 cannot
be removed as seen in the following example.

EXAMPLE 6.5. Let A be the Banach algebra defined in Example 2.5. We ob-

serve that A is commutative. Let a =

[
0 1
0 0

]
and b =

[
0 −1
0 0

]
. Note that a and

b are not invertible. Any x ∈ A is of the form x =

[
α β

0 α

]
, so that ax =

[
0 α

0 0

]
,

bx =
[

0 −α

0 0

]
. Then for λ ̸= 0, ∥(λ −ax)−1∥ = 1

|λ | + | α

λ 2 | = ∥(λ −bx)−1∥ , thus for

any ε > 0, Λε(ax) = Λε(bx) ∀x ∈ A , but a ̸= b .
Note that A is not semi-simple, for σ(ax)=σ(bx)= {0}∀x∈A , but a ̸= 0 ̸= b . Hence,
(3) of Corollary 6.2 does not apply. Also, a is neither invertible nor an idempotent, and
further, cannot be the product of a Hermitian idempotent and an invertible element be-
cause the only idempotent elements of A are the zero and identity matrices. Hence
Theorem 6.3 does not apply.
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