Show simple item record

dc.contributor.creatorHoffmann, Norbert
dc.date.accessioned2013-05-29T13:46:57Z
dc.date.available2013-05-29T13:46:57Z
dc.date.issued2003
dc.identifier.citationHoffmann, N. (2003), 'Stability of Arakelov Bundles and Tensor Products without Global Sections', Documenta Mathematica, Vol. 8, p115-123.en
dc.identifier.urihttp://www.math.uni-bielefeld.de/documenta/vol-08/07.html
dc.identifier.urihttp://hdl.handle.net/10395/1914
dc.description.abstractThis paper deals with Arakelov vector bundles over an arithmetic curve, i.e. over the set of places of a number field. The main result is that for each semistable bundle E, there is a bundle F such that E⊗F has at least a certain slope, but no global sections. It is motivated by an analogous theorem of Faltings for vector bundles over algebraic curves and contains the Minkowski-Hlawka theorem on sphere packings as a special case. The proof uses an adelic version of Siegel’s mean value formula.en
dc.language.isoengen
dc.publisherDocumenta Mathematicaen
dc.relation.ispartofseriesDocumenta Mathematica;8
dc.rightsThis article was originally published in Documenta Mathematica,(2003) Vol. 15 and is available through the following link http://www.math.uni-bielefeld.de/documenta/index.htmlen
dc.subjectArakelov bundleen
dc.subjectArtihmetic curveen
dc.subjectTensor producten
dc.subjectLattice sphere packingen
dc.subjectMean value formulaen
dc.subjectMinkowski-Hlawka theoremen
dc.titleStability of Arakelov bundles and tensor products without global sectionsen
dc.typeArticleen
dc.type.supercollectionall_mic_researchen
dc.type.supercollectionmic_published_revieweden
dc.type.restrictionnoneen
dc.description.versionYesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record