dc.contributor.creator | Hoffmann, Norbert | |
dc.date.accessioned | 2013-05-29T13:46:57Z | |
dc.date.available | 2013-05-29T13:46:57Z | |
dc.date.issued | 2003 | |
dc.identifier.citation | Hoffmann, N. (2003), 'Stability of Arakelov Bundles and Tensor Products without Global Sections', Documenta Mathematica, Vol. 8, p115-123. | en |
dc.identifier.uri | http://www.math.uni-bielefeld.de/documenta/vol-08/07.html | |
dc.identifier.uri | http://hdl.handle.net/10395/1914 | |
dc.description.abstract | This paper deals with Arakelov vector bundles over an
arithmetic curve, i.e. over the set of places of a number field. The
main result is that for each semistable bundle E, there is a bundle F
such that E⊗F has at least a certain slope, but no global sections. It
is motivated by an analogous theorem of Faltings for vector bundles
over algebraic curves and contains the Minkowski-Hlawka theorem on
sphere packings as a special case. The proof uses an adelic version of
Siegel’s mean value formula. | en |
dc.language.iso | eng | en |
dc.publisher | Documenta Mathematica | en |
dc.relation.ispartofseries | Documenta Mathematica;8 | |
dc.rights | This article was originally published in Documenta Mathematica,(2003) Vol. 15 and is available through the following link http://www.math.uni-bielefeld.de/documenta/index.html | en |
dc.subject | Arakelov bundle | en |
dc.subject | Artihmetic curve | en |
dc.subject | Tensor product | en |
dc.subject | Lattice sphere packing | en |
dc.subject | Mean value formula | en |
dc.subject | Minkowski-Hlawka theorem | en |
dc.title | Stability of Arakelov bundles and tensor products without global sections | en |
dc.type | Article | en |
dc.type.supercollection | all_mic_research | en |
dc.type.supercollection | mic_published_reviewed | en |
dc.type.restriction | none | en |
dc.description.version | Yes | en |