Show simple item record

dc.contributor.creatorHoffmann, Norbert
dc.date.accessioned2013-05-30T09:29:05Z
dc.date.available2013-05-30T09:29:05Z
dc.date.issued2012
dc.identifier.citationHoffmann, N. (2012), 'The Picard Group of a Coarse Moduli Space of Vector Bundles in Positive Characteristic', Central European Journal of Mathematics, Vol. 10(4), pp 1306-1313en
dc.identifier.urihttp://dx.doi.org/10.2478/s11533-012-0064-0
dc.identifier.urihttp://hdl.handle.net/10395/1917
dc.description.abstractLet C be a smooth projective curve over an algebraically closed field of arbitrary characteristic. Let Mss r,L denote the projective coarse moduli scheme of semistable rank r vector bundles over C with fixed determinant L. We prove Pic(Mss r,L) = Z, identify the ample generator, and deduce that Mss r,L is locally factorial. In characteristic zero, this has already been proved by Dr´ezet and Narasimhan. The main point of the present note is to circumvent the usual problems with Geometric Invariant Theory in positive caracteristic.en
dc.language.isoengen
dc.publisherVersita, co-published with Springer Verlag.en
dc.relation.ispartofseriesCentral European Journal of Mathematics;10/4
dc.rightsThe final publication is available at link.springer.com through the following link:http://dx.doi.org/10.2478/s11533-012-0064-0en
dc.subjectPicard groupen
dc.subjectCoarse modulien
dc.subjectVector bundleen
dc.titleThe Picard group of a coarse moduli space of vector bundles in positive characteristic (Pre-published version)en
dc.typeArticleen
dc.type.supercollectionall_mic_researchen
dc.type.supercollectionmic_published_revieweden
dc.type.restrictionnoneen
dc.description.versionYesen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record