dc.contributor.creator | Kulkarni, S H | |
dc.contributor.creator | Krishnan, Arundhathi | |
dc.date.accessioned | 2024-10-01T15:21:34Z | |
dc.date.available | 2024-10-01T15:21:34Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Krishnan, A. and Kulkarni, S. H. (2017) 'Pseudospectra of elements of reduced Banach algebras', Advances in Operator Theory, 2(4), 475-493, available: http://doi.org/10.22034/aot.1702-1112. | en_US |
dc.identifier.issn | 2538-225x | |
dc.identifier.uri | https://dspace.mic.ul.ie/handle/10395/3335 | |
dc.description.abstract | Let A be a Banach algebra with identity 1 and p ∈ A be a non-trivial idempotent. Then q = 1−p is also an idempotent. The subalgebras pAp and qAq are Banach algebras, called reduced Banach algebras, with identities p and q respectively. For a ∈ A and ε > 0, we examine the relationship between the ε-pseudospectrum Λε(A, a) of a ∈ A, and ε-pseudospectra of pap ∈ pAp
and qaq ∈ qAq. We also extend this study by considering a finite number of idempotents p1, · · · , pn, as well as an arbitrary family of idempotents satisfying certain conditions. | en_US |
dc.description.sponsorship | Council of Scientific and Industrial Research (CSIR), India (File No: 09/084(0647)/2013-EMR-I). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartofseries | 2;4 | |
dc.rights | 12 months | en_US |
dc.rights.uri | http://www.aot-math.org/article_48321.html | en_US |
dc.subject | Direct sum | en_US |
dc.subject | Reduced Banach algebra | en_US |
dc.subject | Idempotent | en_US |
dc.subject | Pseudospectrum | en_US |
dc.subject | Spectrum | en_US |
dc.title | Pseudospectra of elements of reduced Banach algebras (Pre-published version) | en_US |
dc.type | Article | en_US |
dc.type.supercollection | all_mic_research | en_US |
dc.type.supercollection | mic_published_reviewed | en_US |
dc.description.version | Yes | en_US |
dc.identifier.doi | 10.22034/aot.1702-1112 | |