Stability of Arakelov bundles and tensor products without global sections

dc.contributor.creatorHoffmann, Norbert
dc.date.accessioned2013-05-29T13:46:57Z
dc.date.available2013-05-29T13:46:57Z
dc.date.issued2003
dc.description.abstractThis paper deals with Arakelov vector bundles over an arithmetic curve, i.e. over the set of places of a number field. The main result is that for each semistable bundle E, there is a bundle F such that E⊗F has at least a certain slope, but no global sections. It is motivated by an analogous theorem of Faltings for vector bundles over algebraic curves and contains the Minkowski-Hlawka theorem on sphere packings as a special case. The proof uses an adelic version of Siegel’s mean value formula.en
dc.description.versionYesen
dc.identifier.citationHoffmann, N. (2003), 'Stability of Arakelov Bundles and Tensor Products without Global Sections', Documenta Mathematica, Vol. 8, p115-123.en
dc.identifier.urihttp://www.math.uni-bielefeld.de/documenta/vol-08/07.html
dc.identifier.urihttp://hdl.handle.net/10395/1914
dc.language.isoengen
dc.publisherDocumenta Mathematicaen
dc.relation.ispartofseriesDocumenta Mathematica;8
dc.rightsThis article was originally published in Documenta Mathematica,(2003) Vol. 15 and is available through the following link http://www.math.uni-bielefeld.de/documenta/index.htmlen
dc.subjectArakelov bundleen
dc.subjectArtihmetic curveen
dc.subjectTensor producten
dc.subjectLattice sphere packingen
dc.subjectMean value formulaen
dc.subjectMinkowski-Hlawka theoremen
dc.titleStability of Arakelov bundles and tensor products without global sectionsen
dc.typeArticleen
dc.type.restrictionnoneen
dc.type.supercollectionall_mic_researchen
dc.type.supercollectionmic_published_revieweden

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hoffmann, N. (2003), 'Stability of Arakelov Bundles and Tensor Products without Global Sections'(Journal Article).pdf
Size:
133.27 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.47 KB
Format:
Item-specific license agreed upon to submission
Description: