dc.contributor.creator | Hoffmann, Norbert | |
dc.date.accessioned | 2013-05-31T11:21:54Z | |
dc.date.available | 2013-05-31T11:21:54Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Hoffmann, N. (2011), 'Independent Parameters for special Instanton bundles on P^{2n+1}', Journal of Geometry and Physics, Vol.61(12), p2321-2330. | en |
dc.identifier.uri | http://hdl.handle.net/10395/1925 | |
dc.description.abstract | Motivated by Yang-Mills theory in 4n dimensions,
and generalizing the notion due to Atiyah, Drinfeld, Hitchin and Manin for n = 1, Okonek, Spindler and Trautmann introduced
instanton bundles and special instanton bundles as certain algebraic
vector bundles of rank 2n on the complex projective space P^{2n+1}. The moduli space of special instanton bundles is shown to
be rational. | en |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.relation.ispartofseries | Journal of Geometry and Physics;63/12 | |
dc.rights | © Elsevier, The original publication of Hoffmann, N. (2011), 'Independent Parameters for special Instanton bundles on P^{2n+1}', Journal of Geometry and Physics, Vol.61(12), p2321-2330 is available at http://dx.doi.org/10.1016/j.geomphys.2011.07.006 | en |
dc.subject | Instanton bundle | en |
dc.subject | Moduli space | en |
dc.subject | Rationality | en |
dc.title | Independent parameters for special instanton bundles on P^{2n+1} (Pre-published Version) | en |
dc.type | Article | en |
dc.type.supercollection | all_mic_research | en |
dc.type.supercollection | mic_published_reviewed | en |
dc.type.restriction | none | en |
dc.description.version | Yes | en |
dc.identifier.doi | http://dx.doi.org/10.1016/j.geomphys.2011.07.006 | |