The Brauer group of moduli spaces of vector bundles over a real curve
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society (AMS)
Abstract
Let X be a geometrically connected smooth projective curve of
genus gX ≥ 2 over R. Let M(r, ξ) be the coarse moduli space of geometrically
stable vector bundles E over X of rank r and determinant ξ, where ξ is a real
point of the Picard variety Picd(X). If gX = r = 2, then let d be odd. We
compute the Brauer group of M(r, ξ).
Description
Keywords
Citation
Biswas, I. et al. (2011), 'The Brauer Group of Moduli Spaces of Vector Bundles over a Real Curve', Proceedings of the American Mathematical Society, Vol.139(12), p4173-4179.

