The Brauer group of moduli spaces of vector bundles over a real curve

Loading...
Thumbnail Image

Date

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society (AMS)

Abstract

Let X be a geometrically connected smooth projective curve of genus gX ≥ 2 over R. Let M(r, ξ) be the coarse moduli space of geometrically stable vector bundles E over X of rank r and determinant ξ, where ξ is a real point of the Picard variety Picd(X). If gX = r = 2, then let d be odd. We compute the Brauer group of M(r, ξ).

Description

Citation

Biswas, I. et al. (2011), 'The Brauer Group of Moduli Spaces of Vector Bundles over a Real Curve', Proceedings of the American Mathematical Society, Vol.139(12), p4173-4179.