dc.contributor.creator | Biswas, Indranil | |
dc.contributor.creator | Gómez, Tomás L. | |
dc.contributor.creator | Hoffmann, Norbert | |
dc.contributor.creator | Logares, Marina | |
dc.date.accessioned | 2013-06-27T11:54:33Z | |
dc.date.available | 2013-06-27T11:54:33Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | Biswas, I. et al. (2009), 'Torelli Theorem for the Deligne-Hitchin Moduli Space', Communications in Mathematical Physics, Vol. 290(1), p 357-369. | en |
dc.identifier.uri | http://hdl.handle.net/10395/1974 | |
dc.description.abstract | Fix integers g ≥ 3 and r ≥ 2, with r ≥ 3 if g = 3. Given a compact connected Riemann surface X of genus g, let M DH (X) denote the corresponding SL(r,C) Deligne–Hitchin moduli space. We prove that the complex analytic space M DH (X) determines (up to an isomorphism) the unordered pair {X,X − − } , where X − − is the Riemann surface defined by the opposite almost complex structure on X | en |
dc.language.iso | eng | en |
dc.publisher | Springer Verlag | en |
dc.relation.ispartofseries | Communications in Mathematical Physics;290/1 | |
dc.rights | © Springer Verlag, The original publication of Biswas, I. et al. (2009), 'Torelli Theorem for the Deligne-Hitchin Moduli Space', Communications in Mathematical Physics, Vol. 290(1), p 357-369 is available at http://dx.doi.org/10.1007/s00220-009-0831-3 | en |
dc.subject | Moduli space | en |
dc.subject | Torelli Theorem | en |
dc.title | Torelli theorem for the Deligne-Hitchin moduli space (Pre-published version) | en |
dc.type | Article | en |
dc.type.supercollection | all_mic_research | en |
dc.type.supercollection | mic_published_reviewed | en |
dc.type.restriction | none | en |
dc.description.version | Yes | en |
dc.identifier.doi | http://dx.doi.org/10.1007/s00220-009-0831-3 | |