Show simple item record

dc.contributor.creatorKreussler, Bernd
dc.contributor.creatorHonda, Nobuhiro
dc.date.accessioned2018-10-09T11:34:11Z
dc.date.available2018-10-09T11:34:11Z
dc.date.issued2017
dc.identifier.citationHonda, N.; Kreussler, B. (2017) 'Algebraic dimension of twistor spaces whose fundamental system is a pencil'. Journal of the London Mathematical Society 95(3), pp. 989-1010. DOI: 10.1112/jlms.12043en_US
dc.identifier.urihttp://hdl.handle.net/10395/2236
dc.descriptionAlgebraic dimension of twistor spaces whose fundamental system is a pencilen_US
dc.description.abstractWe show that the algebraic dimension of a twistor space over nℂℙ2 cannot be two if n>4 and the fundamental system (that is, the linear system associated to the half‐anti‐canonical bundle, which is available on any twistor space) is a pencil. This means that if the algebraic dimension of a twistor space on nℂℙ2, n>4, is two, then the fundamental system is either empty or consists of a single member. The existence problem for a twistor space on nℂℙ2 with algebraic dimension two is open for n>4.en_US
dc.language.isoengen_US
dc.publisherLondon Mathematical Societyen_US
dc.relation.ispartofseries95;3
dc.rights.urihttps://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/jlms.12043en_US
dc.subjectAlgebraen_US
dc.subjectTwistor spacesen_US
dc.subjectSystemen_US
dc.subjectPencilen_US
dc.titleAlgebraic dimension of twistor spaces whose fundamental system is a pencil (pre-published version)en_US
dc.typeArticleen_US
dc.type.supercollectionall_mic_researchen_US
dc.type.supercollectionmic_published_revieweden_US
dc.description.versionYesen_US
dc.identifier.doi10.1112/jlms.12043


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record