dc.contributor.creator | Kreussler, Bernd | |
dc.contributor.creator | Honda, Nobuhiro | |
dc.date.accessioned | 2018-10-09T11:34:11Z | |
dc.date.available | 2018-10-09T11:34:11Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Honda, N.; Kreussler, B. (2017) 'Algebraic dimension of twistor spaces whose fundamental system is a pencil'. Journal of the London Mathematical Society 95(3), pp. 989-1010. DOI: 10.1112/jlms.12043 | en_US |
dc.identifier.uri | http://hdl.handle.net/10395/2236 | |
dc.description | Algebraic dimension of twistor spaces whose fundamental system is a pencil | en_US |
dc.description.abstract | We show that the algebraic dimension of a twistor space over nℂℙ2 cannot be two if n>4 and the fundamental system (that is, the linear system associated to the half‐anti‐canonical bundle, which is available on any twistor space) is a pencil. This means that if the algebraic dimension of a twistor space on nℂℙ2, n>4, is two, then the fundamental system is either empty or consists of a single member. The existence problem for a twistor space on nℂℙ2 with algebraic dimension two is open for n>4. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | London Mathematical Society | en_US |
dc.relation.ispartofseries | 95;3 | |
dc.rights.uri | https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/jlms.12043 | en_US |
dc.subject | Algebra | en_US |
dc.subject | Twistor spaces | en_US |
dc.subject | System | en_US |
dc.subject | Pencil | en_US |
dc.title | Algebraic dimension of twistor spaces whose fundamental system is a pencil (pre-published version) | en_US |
dc.type | Article | en_US |
dc.type.supercollection | all_mic_research | en_US |
dc.type.supercollection | mic_published_reviewed | en_US |
dc.description.version | Yes | en_US |
dc.identifier.doi | 10.1112/jlms.12043 | |