dc.contributor.creator | Kreussler, Bernd | |
dc.date.accessioned | 2018-11-23T11:19:50Z | |
dc.date.available | 2018-11-23T11:19:50Z | |
dc.date.issued | 2007 | |
dc.identifier.citation | B. Kreussler. Solving Cubic Equations in Two Variables, Irish Math. Soc. Bulletin, 60 (2007) 45-66. | en_US |
dc.identifier.issn | 0791-5578 | |
dc.identifier.uri | http://hdl.handle.net/10395/2432 | |
dc.description | Solving cubic equations in two variables. | en_US |
dc.description.abstract | After recalling a geometric construction of all Pythagorean triples of integers, the same idea is applied to find rational solutions of cubic equations in two variables. This leads to the definition of the Mordell-Weil group. The final selection collects some of the basic properties of this group. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Irish Mathematical Society | en_US |
dc.relation.ispartofseries | 60; | |
dc.rights.uri | www.maths.tcd.ie/pub/ims/bull60/R6002.ps | en_US |
dc.subject | Solving | en_US |
dc.subject | Cubic | en_US |
dc.subject | Equations | en_US |
dc.subject | Two | en_US |
dc.subject | Variables | en_US |
dc.subject | Pythagoras | en_US |
dc.subject | Example | en_US |
dc.subject | Theorem | en_US |
dc.title | Solving cubic equations in two variables | en_US |
dc.type | Article | en_US |
dc.type.supercollection | all_mic_research | en_US |
dc.type.supercollection | mic_published_reviewed | en_US |
dc.description.version | Yes | en_US |