MIRR - Mary Immaculate Research Repository

    • Login
    View Item 
    •   Home
    • FACULTY OF ARTS
    • Department of Mathematics and Computer Studies
    • Mathematics and Computer Studies (Peer-reviewed publications)
    • View Item
    •   Home
    • FACULTY OF ARTS
    • Department of Mathematics and Computer Studies
    • Mathematics and Computer Studies (Peer-reviewed publications)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of MIRRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Resources

    How to submitCopyrightFAQs

    Moduli schemes of generically simple Azumaya modules

    Citation

    Hoffmann, N., Stuhler, U. (2005) 'Moduli Schemes of Generically Simple Azumaya Modules.' Documenta Mathematica 10, pp. 369-389.
    Thumbnail
    View/Open
    Main article (196.6Kb)
    Date
    2005
    Author
    Hoffmann, Norbert
    Stuhler, Ulrich
    Peer Reviewed
    Yes
    Metadata
    Show full item record
    Hoffmann, N., Stuhler, U. (2005) 'Moduli Schemes of Generically Simple Azumaya Modules.' Documenta Mathematica 10, pp. 369-389.
    Abstract
    Let A be an Azumaya algebra over a smooth projective variety X or more generally, a torsion free coherent sheaf of algebras over X whose generic fiber is a central simple algebra. We show that generically simple torsion free A-module sheaves have a projective coarse moduli scheme; it is smooth and even symplectic if X is an abelian or K3 surface and A is Azumaya. We explain a relation to the classical theory of the Brandt groupoid.
    Keywords
    Moduli space
    Torsion free sheaf
    Azumaya module
    Brandt groupoid
    Language (ISO 639-3)
    eng
    Publisher
    Documenta Mathematica
    License URI
    https://www.math.uni-bielefeld.de/documenta/vol-10/12.pdf
    URI
    http://hdl.handle.net/10395/2507
    Local
    arXiv:math/0411094v2
    Collections
    • Mathematics and Computer Studies (Peer-reviewed publications)

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
     

     


    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback