Show simple item record

dc.contributor.creatorKitson, Derek
dc.contributor.creatorNixon, Anthony
dc.contributor.creatorSchulze, Bernd
dc.date.accessioned2021-02-23T09:42:33Z
dc.date.available2021-02-23T09:42:33Z
dc.date.issued2020-12-15
dc.identifier.citationKitson, D., Nixon, A. and Schulze, B. (2020) 'Rigidity of symmetric frameworks in normed spaces', Linear Algebra and its Applications, 607, 231-285, available: https://doi.org/10.1016/j.laa.2020.08.004en_US
dc.identifier.issn1873-1856
dc.identifier.urihttps://dspace.mic.ul.ie/handle/10395/2939
dc.description.abstractWe develop a combinatorial rigidity theory for symmetric bar-joint frameworks in a general finite dimensional normed space. In the case of rotational symmetry, matroidal Maxwell-type sparsity counts are identified for a large class of d-dimensional normed spaces (including all lp spaces with p not equal to 2). Complete combinatorial characterisations are obtained for half-turn rotation in the l1 and l-infinity plane. As a key tool, a new Henneberg-type inductive construction is developed for the matroidal class of (2,2,0)-gain-tight gain graphs.en_US
dc.description.sponsorshipSupported by the Engineering and Physical Sciences Research Council [grant numbers EP/P01108X/1 and EP/S00940X/1].en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesLinear Algebra and its Applications;
dc.rightsOpen Access
dc.rights.urihttps://www.sciencedirect.com/science/article/pii/S0024379520303773?via%3Dihub
dc.subjectBar-joint frameworken_US
dc.subjectInfinitesimal rigidity
dc.subjectGain graphs
dc.subjectMatroids
dc.subjectNormed spaces
dc.titleRigidity of symmetric frameworks in normed spacesen_US
dc.typeArticleen_US
dc.type.supercollectionmic_published_revieweden_US
dc.description.versionYesen_US
dc.identifier.doi10.1016/j.laa.2020.08.004


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record