dc.contributor.creator | Koestler, Claus | |
dc.contributor.creator | Krishnan, Arundhathi | |
dc.contributor.creator | Wills, Stephen | |
dc.date.accessioned | 2024-09-27T10:26:07Z | |
dc.date.available | 2024-09-27T10:26:07Z | |
dc.date.issued | 2023-03-13 | * |
dc.identifier.citation | Koestler, C., Krishnan, A. and Wills, S. (2023) 'Markovianity and the Thompson monoid F+', Journal of Functional Analysis, 284(6), available: https://doi.org/10.1016/j.jfa.2022.109818. | en_US |
dc.identifier.issn | 0022-1236 | |
dc.identifier.uri | https://dspace.mic.ul.ie/handle/10395/3333 | |
dc.description.abstract | We introduce a new distributional invariance principle, called `partial spreadability',
which emerges from the representation theory of the Thompson monoid F+ in noncommutative
probability spaces. We show that a partially spreadable sequence of noncommutative random
variables is adapted to a local Markov filtration. Conversely we show that a large class of
noncommutative stationary Markov sequences provides representations of the Thompson monoid
F+. In the particular case of a classical probability space, we arrive at a de Finetti
theorem for stationary Markov sequences with values in a standard Borel space. | en_US |
dc.description.sponsorship | Government of Ireland Postdoctoral Fellowship Programme (Project ID: GOIPD/2018/498) | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartofseries | 284;6 | |
dc.rights | 24 Months
CC BY-NC-ND | en_US |
dc.rights.uri | https://www.sciencedirect.com/science/article/pii/S0022123622004384 | en_US |
dc.subject | Distributional Invariance Principles | en_US |
dc.subject | Noncommutative De Finetti Theorems | en_US |
dc.subject | Noncommutative Stationary Markov Processes | en_US |
dc.subject | Representations of Thompson monoid F+ | en_US |
dc.title | Markovianity and the Thompson monoid F+ (Pre-published version) | en_US |
dc.type | Article | en_US |
dc.type.supercollection | all_mic_research | en_US |
dc.type.supercollection | mic_published_reviewed | en_US |
dc.description.version | Yes | en_US |
dc.identifier.doi | 10.1016/j.jfa.2022.109818 | |