Show simple item record

dc.contributor.creatorKoestler, Claus
dc.contributor.creatorKrishnan, Arundhathi
dc.contributor.creatorWills, Stephen
dc.date.accessioned2024-09-27T10:26:07Z
dc.date.available2024-09-27T10:26:07Z
dc.date.issued2023-03-13*
dc.identifier.citationKoestler, C., Krishnan, A. and Wills, S. (2023) 'Markovianity and the Thompson monoid F+', Journal of Functional Analysis, 284(6), available: https://doi.org/10.1016/j.jfa.2022.109818.en_US
dc.identifier.issn0022-1236
dc.identifier.urihttps://dspace.mic.ul.ie/handle/10395/3333
dc.description.abstractWe introduce a new distributional invariance principle, called `partial spreadability', which emerges from the representation theory of the Thompson monoid F+ in noncommutative probability spaces. We show that a partially spreadable sequence of noncommutative random variables is adapted to a local Markov filtration. Conversely we show that a large class of noncommutative stationary Markov sequences provides representations of the Thompson monoid F+. In the particular case of a classical probability space, we arrive at a de Finetti theorem for stationary Markov sequences with values in a standard Borel space.en_US
dc.description.sponsorshipGovernment of Ireland Postdoctoral Fellowship Programme (Project ID: GOIPD/2018/498)en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofseries284;6
dc.rights24 Months CC BY-NC-NDen_US
dc.rights.urihttps://www.sciencedirect.com/science/article/pii/S0022123622004384en_US
dc.subjectDistributional Invariance Principlesen_US
dc.subjectNoncommutative De Finetti Theoremsen_US
dc.subjectNoncommutative Stationary Markov Processesen_US
dc.subjectRepresentations of Thompson monoid F+en_US
dc.titleMarkovianity and the Thompson monoid F+ (Pre-published version)en_US
dc.typeArticleen_US
dc.type.supercollectionall_mic_researchen_US
dc.type.supercollectionmic_published_revieweden_US
dc.description.versionYesen_US
dc.identifier.doi10.1016/j.jfa.2022.109818


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record