Show simple item record

dc.contributor.creatorKoestler, Claus
dc.contributor.creatorKrishnan, Arundhathi
dc.date.accessioned2024-10-14T09:20:39Z
dc.date.available2024-10-14T09:20:39Z
dc.date.issued2022-10-27*
dc.identifier.citationKoestler, C. and Krishnan, A. (2022) 'Markovianity and the Thompson Group F', Symmetry, Integrability and Geometry: Methods and Applications, 18(083), available: https://doi.org/10.3842/SIGMA.2022.083.en_US
dc.identifier.issn1815-0659
dc.identifier.urihttps://dspace.mic.ul.ie/handle/10395/3338
dc.description.abstractWe show that representations of the Thompson group F in the automorphisms of a noncommutative probability space yield a large class of bilateral stationary noncommutative Markov processes. As a partial converse, bilateral stationary Markov processes in tensor dilation form yield representations of F. As an application, and building on a result of Kuemmerer, we canonically associate a representation of F to a bilateral stationary Markov process in classical probability.en_US
dc.description.sponsorshipGovernment of Ireland Postdoctoral Fellowship (Project ID: GOIPD/2018/498)en_US
dc.language.isoengen_US
dc.relation.ispartofseries18;083
dc.rightsOpen Accessen_US
dc.rights.urihttps://www.emis.de/journals/SIGMA/2022/083/en_US
dc.subjectNoncommutative stationary Markov processesen_US
dc.subjectRepresentations of Thompson group Fen_US
dc.titleMarkovianity and the Thompson Group F (Pre-published version)en_US
dc.typeArticleen_US
dc.type.supercollectionall_mic_researchen_US
dc.type.supercollectionmic_published_revieweden_US
dc.description.versionYesen_US
dc.identifier.doi10.3842/SIGMA.2022.083


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record