Show simple item record

dc.contributor.creatorO'Brien, Cian
dc.contributor.creatorQuinlan, Rachel
dc.date.accessioned2025-09-03T14:28:58Z
dc.date.available2025-09-03T14:28:58Z
dc.date.issued2022-07-08
dc.identifier.citationO'Brien, C. and Quinlan, R. (2022) 'Alternating sign matrices of finite multiplicative order', Linear Algebra and its Applications, 651, 332-358, available: https://doi.org/10.1016/j.laa.2022.06.001.en_US
dc.identifier.issn0024-3795
dc.identifier.urihttps://dspace.mic.ul.ie/handle/10395/3467
dc.description.abstractWe investigate alternating sign matrices that are not permuta- tion matrices, but have finite order in a general linear group. We classify all such examples of the form P + T , where P is a permutation matrix and T has four non-zero entries, forming a square with entries 1 and −1 in each row and column. We show that the multiplicative orders of these matrices do not always coincide with those of permutation matrices of the same size. We pose the problem of identifying finite subgroups of general linear groups that are generated by alternating sign matrices. © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY licenseen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofseries651;
dc.rightsOpen Access CC BY 4.0 Attribution 4.0 International Deeden_US
dc.rights.urihttps://www.sciencedirect.com/science/article/pii/S0024379522002178?via%3Dihuben_US
dc.subjectAlternating sign matrixen_US
dc.subjectMinimum polynomialen_US
dc.titleAlternating sign matrices of finite multiplicative orderen_US
dc.typeArticleen_US
dc.type.supercollectionall_mic_researchen_US
dc.type.supercollectionmic_published_revieweden_US
dc.description.versionYesen_US
dc.identifier.doi10.1016/j.laa.2022.06.001


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record