Show simple item record

dc.contributor.creatorHoffmann, Norbert
dc.date.accessioned2013-05-30T10:53:01Z
dc.date.available2013-05-30T10:53:01Z
dc.date.issued2007
dc.identifier.citationHoffmann, N. (2007), 'Rationality and Poincaré Families for Vector Bundles with Extra Structure on a Curve', International Mathematics Research Notices, Vol. 2007.en
dc.identifier.urihttp://dx.doi.org/10.1093/imrn/rnm010
dc.identifier.urihttp://hdl.handle.net/10395/1918
dc.description.abstractIterated Grassmannian bundles over moduli stacks of vector bundles on a curve are shown to be birational to an affine space times a moduli stack of degree 0 vector bundles, following the method of King and Schofield. Applications include the birational type of some Brill-Noether loci, of moduli schemes for vector bundles with parabolic structure or with level structure and for A. Schmitt’s decorated vector bundles. A further consequence concerns the existence of Poincaré families on finite coverings of the moduli schemes.en
dc.language.isoengen
dc.publisherOxford University Pressen
dc.relation.ispartofseries(IMRN) International Mathematics Research Notices;
dc.rightsThis is a pre-copy-editing, author-produced PDF of an article accepted for publication in (IMRN) International Mathematics Research Notices (2007) Vol. 2007 following peer review. The definitive publisher-authenticated version - Hoffman, N. (2007), 'Rationality and Poincaré Families for Vector Bundles with Extra Structure on a Curve', International Mathematics Research Notices, Vol. 2007 is available online at: http://dx.doi.org/10.1093/imrn/rnm010en
dc.subjectVector bundlesen
dc.subjectPoincaré familiesen
dc.subjectCurveen
dc.titleRationality and Poincaré families for vector bundles with extra structure on a curve (Pre-published version)en
dc.typeArticleen
dc.type.supercollectionall_mic_researchen
dc.type.supercollectionmic_published_revieweden
dc.type.restrictionnoneen
dc.description.versionYesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record